From a356800824d55a8d507f767718a4dd25ee40f23b Mon Sep 17 00:00:00 2001
From: aslesha <cb.en.u4cse16259@cb.students.amrita.edu>
Date: Wed, 2 Jan 2019 12:21:27 +0530
Subject: [PATCH] Delete q2__16259.py

---
 lab4/q2__16259.py | 122 ----------------------------------------------
 1 file changed, 122 deletions(-)
 delete mode 100644 lab4/q2__16259.py

diff --git a/lab4/q2__16259.py b/lab4/q2__16259.py
deleted file mode 100644
index 4e8bfb4..0000000
--- a/lab4/q2__16259.py
+++ /dev/null
@@ -1,122 +0,0 @@
-import csv 
-import numpy as np 
-import matplotlib.pyplot as plt 
-def loadCSV(filename): 
-	''' 
-	function to load dataset 
-	'''
-	with open(filename,"r") as csvfile: 
-		lines = csv.reader(csvfile) 
-		dataset = list(lines) 
-		for i in range(len(dataset)): 
-			dataset[i] = [float(x) for x in dataset[i]]	 
-	return np.array(dataset) 
-def normalize(X): 
-	''' 
-	function to normalize feature matrix, X 
-	'''
-	mins = np.min(X, axis = 0) 
-	maxs = np.max(X, axis = 0) 
-	rng = maxs - mins 
-	norm_X = 1 - ((maxs - X)/rng) 
-	return norm_X 
-def logistic_func(beta, X): 
-	''' 
-	logistic(sigmoid) function 
-	'''
-	return 1.0/(1 + np.exp(-np.dot(X, beta.T))) 
-def log_gradient(beta, X, y): 
-	''' 
-	logistic gradient function 
-	'''
-	first_calc = logistic_func(beta, X) - y.reshape(X.shape[0], -1) 
-	final_calc = np.dot(first_calc.T, X) 
-	return final_calc 
-def cost_func(beta, X, y): 
-	''' 
-	cost function, J 
-	'''
-	log_func_v = logistic_func(beta, X) 
-	y = np.squeeze(y) 
-	step1 = y * np.log(log_func_v) 
-	step2 = (1 - y) * np.log(1 - log_func_v) 
-	final = -step1 - step2 
-	return np.mean(final) 
-
-def grad_desc(X, y, beta, lr=.01, converge_change=.001): 
-	''' 
-	gradient descent function 
-	'''
-	cost = cost_func(beta, X, y) 
-	change_cost = 1
-	num_iter = 1
-	
-	while(change_cost > converge_change): 
-		old_cost = cost 
-		beta = beta - (lr * log_gradient(beta, X, y)) 
-		cost = cost_func(beta, X, y) 
-		change_cost = old_cost - cost 
-		num_iter += 1
-	
-	return beta, num_iter 
-def pred_values(beta, X): 
-	''' 
-	function to predict labels 
-	'''
-	pred_prob = logistic_func(beta, X) 
-	pred_value = np.where(pred_prob >= .5, 1, 0) 
-	return np.squeeze(pred_value)
-def plot_reg(X, y, beta): 
-	''' 
-	function to plot decision boundary 
-	'''
-	# labelled observations 
-	x_0 = X[np.where(y == 0.0)] 
-	x_1 = X[np.where(y == 1.0)] 
-	
-	# plotting points with diff color for diff label 
-	plt.scatter([x_0[:, 1]], [x_0[:, 2]], c='b', label='y = 0') 
-	plt.scatter([x_1[:, 1]], [x_1[:, 2]], c='r', label='y = 1') 
-	
-	# plotting decision boundary 
-	x1 = np.arange(0, 1, 0.1) 
-	x2 = -(beta[0,0] + beta[0,1]*x1)/beta[0,2] 
-	plt.plot(x1, x2, c='k', label='reg line') 
-
-	plt.xlabel('x1') 
-	plt.ylabel('x2') 
-	plt.legend() 
-	plt.show() 
-if __name__ == "__main__": 
-	# load the dataset 
-	dataset = loadCSV('dataset1.csv') 
-	
-	# normalizing feature matrix 
-	X = normalize(dataset[:, :-1]) 
-	
-	# stacking columns wth all ones in feature matrix 
-	X = np.hstack((np.matrix(np.ones(X.shape[0])).T, X)) 
-
-	# response vector 
-	y = dataset[:, -1] 
-
-	# initial beta values 
-	beta = np.matrix(np.zeros(X.shape[1])) 
-
-	# beta values after running gradient descent 
-	beta, num_iter = grad_desc(X, y, beta) 
-
-	# estimated beta values and number of iterations 
-	print("Estimated regression coefficients:", beta) 
-	print("No. of iterations:", num_iter) 
-
-	# predicted labels 
-	y_pred = pred_values(beta, X) 
-	
-	# number of correctly predicted labels 
-	print("Correctly predicted labels:", np.sum(y == y_pred)) 
-	
-	# plotting regression line 
-	plot_reg(X, y, beta) 
-
-
-- 
GitLab