From 73b5a3e264b372594d15b6b5d375308f1a0a7fa3 Mon Sep 17 00:00:00 2001
From: Indrakanti Aishwarya <cb.en.p2cys21014@cb.students.amrita.edu>
Date: Thu, 10 Aug 2023 14:50:40 +0530
Subject: [PATCH] Upload New File

---
 Secure LCB/FINAL_SECURE.ipynb | 752 ++++++++++++++++++++++++++++++++++
 1 file changed, 752 insertions(+)
 create mode 100644 Secure LCB/FINAL_SECURE.ipynb

diff --git a/Secure LCB/FINAL_SECURE.ipynb b/Secure LCB/FINAL_SECURE.ipynb
new file mode 100644
index 0000000..de7d259
--- /dev/null
+++ b/Secure LCB/FINAL_SECURE.ipynb	
@@ -0,0 +1,752 @@
+{
+ "cells": [
+  {
+   "cell_type": "code",
+   "execution_count": 34,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "#1#Header\n",
+    "import csv\n",
+    "import numpy as np\n",
+    "import os \n",
+    "from os import urandom\n",
+    "from keras.models import model_from_json"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 35,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "#2#Defining Global Variables\n",
+    "num_rounds = 20\n",
+    "#num_rounds = 10\n",
+    "m = 0\n",
+    "o = 0\n",
+    "counter = 0\n",
+    "k_int = 0\n",
+    "k_int1 = 0"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 36,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "#3#Defining WORDSIZE\n",
+    "def WORD_SIZE():\n",
+    "    return(16);"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 37,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "#4#Defining S-Box\n",
+    "#s_box_mapping_np = np.array([12, 5, 6, 11, 9, 0, 10, 13, 3, 14, 15, 8, 4, 7, 1, 2], dtype=np.uint8)\n",
+    "s_box_mapping_np = np.array([0, 4, 1, 5, 2, 6, 3, 7, 8, 12, 9, 13, 10, 14, 11, 15], dtype=np.uint8)\n",
+    "\n",
+    "def s_box(input_bits):\n",
+    "    input_bits_int = int(input_bits)\n",
+    "    output_bits_int = s_box_mapping_np[input_bits_int]\n",
+    "    return output_bits_int"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 38,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "#5#Defining P-Box\n",
+    "def decimal_to_binary_list(value, num_bits=4):\n",
+    "    return np.array([int(x) for x in format(value, f'0{num_bits}b')], dtype=np.uint8)\n",
+    "\n",
+    "def p_box(c_decimal, d_decimal, x_decimal, y_decimal):\n",
+    "    c = decimal_to_binary_list(c_decimal)\n",
+    "    d = decimal_to_binary_list(d_decimal)\n",
+    "    x = decimal_to_binary_list(x_decimal)\n",
+    "    y = decimal_to_binary_list(y_decimal)\n",
+    "    \n",
+    "    e = np.zeros(16, dtype=np.uint8)\n",
+    "\n",
+    "    e[0] = d[0]\n",
+    "    e[1] = y[0]\n",
+    "    e[2] = c[3]\n",
+    "    e[3] = x[3]\n",
+    "    e[4] = x[1]\n",
+    "    e[5] = y[1]\n",
+    "    e[6] = c[2]\n",
+    "    e[7] = d[2]\n",
+    "    e[8] = d[0]\n",
+    "    e[9] = x[0]\n",
+    "    e[10] = y[3]\n",
+    "    e[11] = c[3]\n",
+    "    e[12] = c[1]\n",
+    "    e[13] = d[1]\n",
+    "    e[14] = x[2]\n",
+    "    e[15] = y[2]\n",
+    "\n",
+    "    return e"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 40,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "#6#Defining L-Box\n",
+    "def l_box(f):\n",
+    "\n",
+    "    h = np.zeros(16, dtype=np.uint8)\n",
+    "    h[0] = f[0]\n",
+    "    h[1] = f[8]\n",
+    "    h[2] = f[7]\n",
+    "    h[3] = f[15]\n",
+    "    h[4] = f[1]\n",
+    "    h[5] = f[9]\n",
+    "    h[6] = f[6]\n",
+    "    h[7] = f[14]\n",
+    "    h[8] = f[2]\n",
+    "    h[9] = f[10]\n",
+    "    h[10] = f[5]\n",
+    "    h[11] = f[13]\n",
+    "    h[12] = f[3]\n",
+    "    h[13] = f[11]\n",
+    "    h[14] = f[4]\n",
+    "    h[15] = f[12]\n",
+    "    #print(\"H:\", h)\n",
+    "    return h"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 41,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "#7#Defining F-function for Right Side of Plaintext\n",
+    "def binary_array_to_integer(output):\n",
+    "    int_output = ''.join(map(str, output))\n",
+    "    return int(int_output, 2)\n",
+    "\n",
+    "def to_binary(value, bits):\n",
+    "    return format(value, f'0{bits}b')\n",
+    "\n",
+    "def f_function(x, key, d):\n",
+    "    q=0\n",
+    "    global m, counter, k_int\n",
+    "    #print(\"X:\", x)\n",
+    "    if isinstance(x, int):\n",
+    "        x = [x]\n",
+    "    input_parts = np.zeros((len(x), 4), dtype=np.uint16)\n",
+    "    for i, val in enumerate(x):\n",
+    "        input_parts[i] = np.array([val >> 12, (val >> 8) & 0xF, (val >> 4) & 0xF, val & 0xF])\n",
+    "    #print(\"F_FUNCTION\")\n",
+    "    #print(input_parts)\n",
+    "    s_box_outputs = np.array([[s_box(element) for element in part] for part in input_parts])\n",
+    "    #print(\"S-box:\", s_box_outputs)\n",
+    "    p_box_outputs = np.zeros((len(x), 1, 16), dtype=np.uint8)\n",
+    "    for i in range(len(x)):\n",
+    "        p_box_outputs[i] = np.array(p_box(s_box_outputs[i][0], s_box_outputs[i][1], s_box_outputs[i][2], s_box_outputs[i][3]))\n",
+    "    #print(\"P-box:\", p_box_outputs)\n",
+    "    final_outputs = np.zeros(len(x), dtype=np.uint32)\n",
+    "    #print(len(x))\n",
+    "    for i in range(len(x)):\n",
+    "        #print(len(x))\n",
+    "        final_output = np.array(l_box(p_box_outputs[i][0]))\n",
+    "        k = key[q][(m+1) % 4]\n",
+    "        #print(\"final_output:\", final_output)\n",
+    "        #print(\"Key:\", k)\n",
+    "        if (counter > 1):\n",
+    "            #print(\"counter:\", counter)\n",
+    "            k_bin, k_int = subsequent_key(k_int)\n",
+    "            #print(\"Key in binary:\", k_bin)\n",
+    "            #print(\"k in int\", k_int)\n",
+    "            output = final_output ^ k_bin\n",
+    "        else:\n",
+    "            k = to_binary(k,16)\n",
+    "            k = np.array([int(bit) for bit in k])\n",
+    "            #print(\"k\", k)\n",
+    "            output = final_output ^ k\n",
+    "        #print(\"XORING output:\", output)\n",
+    "        output = binary_array_to_integer(output)\n",
+    "        final_outputs[i] = output\n",
+    "        q +=1 \n",
+    "    #print(\"Final output:\", final_outputs)\n",
+    "    if (m < 2):\n",
+    "            m +=2\n",
+    "    else:\n",
+    "            m = 0\n",
+    "            \n",
+    "    #print(\"_______________________________________________________________\")\n",
+    "    return final_outputs"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 42,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "#akey generation Algorithm\n",
+    "def to_binary(value, bits):\n",
+    "    return format(value, f'0{bits}b')\n",
+    "\n",
+    "def binary_array_to_integer(output):\n",
+    "    int_output = ''.join(map(str, output))\n",
+    "    return int(int_output, 2)\n",
+    "\n",
+    "def subsequent_key(x):\n",
+    "    #x = [x]\n",
+    "    if isinstance(x, int):\n",
+    "        x = [x]\n",
+    "    #print(\"sub key\", x)\n",
+    "    input_parts = np.zeros((len(x), 4), dtype=np.uint16)\n",
+    "    for i, val in enumerate(x):\n",
+    "        input_parts[i] = np.array([val >> 12, (val >> 8) & 0xF, (val >> 4) & 0xF, val & 0xF])\n",
+    "    #print(\"input_part\", input_parts)\n",
+    "    s_box_outputs = np.array([[s_box(element) for element in part] for part in input_parts])\n",
+    "    #print(\"S-box:\", s_box_outputs)\n",
+    "    p_box_outputs = np.zeros((len(x), 1, 16), dtype=np.uint8)\n",
+    "    for i in range(len(x)):\n",
+    "        p_box_outputs[i] = np.array(p_box(s_box_outputs[i][0], s_box_outputs[i][1], s_box_outputs[i][2], s_box_outputs[i][3]))\n",
+    "    #print(\"P-box:\", p_box_outputs)\n",
+    "    bin_output = np.zeros(len(x), dtype=np.uint16)\n",
+    "    final_output = np.zeros(len(x), dtype=np.uint16)\n",
+    "    for i in range(len(x)):\n",
+    "        bin_output = np.array(l_box(p_box_outputs[i][0]))\n",
+    "        #print(bin_output)\n",
+    "        #final_outputs[i] = final_output\n",
+    "        output = binary_array_to_integer(bin_output)\n",
+    "        #print(output)\n",
+    "        final_output[i] = output\n",
+    "        \n",
+    "    #print(\"final_outputs:\", final_outputs)\n",
+    "    return bin_output, final_output"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 43,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "#8#Defining F-function for Left Side of Plaintext\n",
+    "def binary_array_to_integer(output):\n",
+    "    int_output = ''.join(map(str, output))\n",
+    "    return int(int_output, 2)\n",
+    "\n",
+    "def ff_function(x, key, d):\n",
+    "    q=0\n",
+    "    global o, counter, k_int1\n",
+    "    if isinstance(x, int):\n",
+    "        x = [x]\n",
+    "        \n",
+    "    input_parts = np.zeros((len(x), 4), dtype=np.uint16)\n",
+    "    for i, val in enumerate(x):\n",
+    "        input_parts[i] = np.array([val >> 12, (val >> 8) & 0xF, (val >> 4) & 0xF, val & 0xF])\n",
+    "    #print(\"FF_FUNCTION\")\n",
+    "    #print(input_parts)\n",
+    "    s_box_outputs = np.array([[s_box(element) for element in part] for part in input_parts])\n",
+    "    #print(\"S-box:\", s_box_outputs)\n",
+    "    p_box_outputs = np.zeros((len(x), 1, 16), dtype=np.uint8)\n",
+    "    for i in range(len(x)):\n",
+    "        p_box_outputs[i] = np.array(p_box(s_box_outputs[i][0], s_box_outputs[i][1], s_box_outputs[i][2], s_box_outputs[i][3]))\n",
+    "    #print(\"P-box:\", p_box_outputs)\n",
+    "    final_outputs = np.zeros(len(x), dtype=np.uint32)\n",
+    "    #print(len(x))\n",
+    "    for i in range(len(x)):\n",
+    "        #print(len(x))\n",
+    "        final_output = np.array(l_box(p_box_outputs[i][0]))\n",
+    "        k = key[q][o % 4]\n",
+    "        #print(\"final_output:\", final_output)\n",
+    "        #print(\"Key in int:\", k)\n",
+    "        if (counter > 1):\n",
+    "            k_bin, k_int1 = subsequent_key(k_int1)\n",
+    "            #print(\"Key in binary:\", k_bin)\n",
+    "            #print(\"k\", k_int)\n",
+    "            output = final_output ^ k_bin\n",
+    "        else:\n",
+    "            k = to_binary(k,16)\n",
+    "            k = np.array([int(bit) for bit in k])\n",
+    "            #print(\"k\", k)\n",
+    "            output = final_output ^ k\n",
+    "        #print(\"XORING output:\", output)\n",
+    "        output = binary_array_to_integer(output)\n",
+    "        final_outputs[i] = output\n",
+    "        q +=1 \n",
+    "    counter += 1\n",
+    "    #print(\"Final output:\", final_outputs)\n",
+    "    if (o < 2):\n",
+    "            o +=2\n",
+    "    else:\n",
+    "            o = 0\n",
+    "    #print(\"_______________________________________________________________\")\n",
+    "    return final_outputs"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 44,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "#9#Convert the ciphertext pairs into Binary array\n",
+    "def convert_to_binary(row):\n",
+    "    bin_array = np.zeros(64, dtype=np.uint8)\n",
+    "    for i, num in enumerate(row):\n",
+    "        binary_str = format(num, '016b')\n",
+    "        for j, b in enumerate(binary_str):\n",
+    "            bin_array[i * 16 + j] = int(b)\n",
+    "    return bin_array"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 45,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "#10#Encryption Function\n",
+    "def lcb_encrypt(plaintext, key, rounds, d):\n",
+    "    \n",
+    "    left_plaintext = np.uint16(plaintext[0])\n",
+    "    right_plaintext = np.uint16(plaintext[1])\n",
+    "    L, R = left_plaintext, right_plaintext\n",
+    "\n",
+    "    n = 0\n",
+    "    \n",
+    "    while n < rounds:\n",
+    "        L, R = f_function(R, key, d), ff_function(L, key, d)\n",
+    "        n += 1\n",
+    "    print(\"Encryption done per round\") \n",
+    "    #print(rounds)\n",
+    "    #print(n)\n",
+    "    return (L, R)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 46,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "#11#Fuction for generation of keys\n",
+    "import random\n",
+    "\n",
+    "def generate_hex_keys(num_keys, length=16):\n",
+    "    hex_chars = \"0123456789ABCDEF\"\n",
+    "    keys_str = [\"\".join(random.choices(hex_chars, k=length)) for _ in range(num_keys)]\n",
+    "\n",
+    "    return keys_str\n",
+    "\n",
+    "def generate_round_keys(num_keys):\n",
+    "    random_keys_hex = generate_hex_keys(num_keys)\n",
+    "    #random_keys_hex = ['D63A529ECC92D353', '563A529ECC92D353', '163A529ECC92D353', 'D67AD296CC92DB53', '76BA569EDC9BD353']\n",
+    "    #random_keys_hex = ['163A529D687529EC']\n",
+    "    round_keys = []\n",
+    "    \n",
+    "    for random_key_hex in random_keys_hex:\n",
+    "        random_key = int(random_key_hex, 16)\n",
+    "\n",
+    "        K1 = (random_key >> 48) & 0xFFFF\n",
+    "        K2 = (random_key >> 32) & 0xFFFF\n",
+    "        K3 = (random_key >> 16) & 0xFFFF\n",
+    "        K4 = random_key & 0xFFFF\n",
+    "        \n",
+    "        #k1_bin = to_binary(K1, 16)\n",
+    "        #k2_bin = to_binary(K2, 16)\n",
+    "        #k3_bin = to_binary(K3, 16)\n",
+    "        #k4_bin = to_binary(K4, 16)\n",
+    "\n",
+    "        #k1_np_array = np.array([int(bit) for bit in k1_bin])\n",
+    "        #k2_np_array = np.array([int(bit) for bit in k2_bin])\n",
+    "        #k3_np_array = np.array([int(bit) for bit in k3_bin])\n",
+    "        #k4_np_array = np.array([int(bit) for bit in k4_bin])\n",
+    "\n",
+    "        round_key = np.array([K1, K2, K3, K4])\n",
+    "        round_keys.append(round_key)\n",
+    "    round_key = np.array(round_keys)\n",
+    "    #print(\"Key generation done:\", round_keys)\n",
+    "    return round_key"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 47,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "#12#Make dataset\n",
+    "\n",
+    "def make_train_data(n, nr, diff=(0x0020,0)):\n",
+    "  global counter\n",
+    "  Y = np.frombuffer(urandom(n), dtype=np.uint8);\n",
+    "  Y = Y & 1;\n",
+    "  plaintext = np.frombuffer(urandom(4*n), dtype=np.uint32);\n",
+    "  #plaintext = [0xEED4B555]\n",
+    "  #plaintext = [0xCED4B5C6, 0xCED4B5C6, 0xCED4B5C6, 0xCED4B5C6, 0xCED4B5C6]\n",
+    "  plain0l = np.empty(n, dtype=np.uint16)\n",
+    "  plain0r = np.empty(n, dtype=np.uint16)\n",
+    "  \n",
+    "  for i in range(n):\n",
+    "    plain0l[i] = (plaintext[i] >> 16) & 0xffff\n",
+    "    plain0r[i] = plaintext[i] & 0xffff\n",
+    "  \n",
+    "  plain1l = plain0l ^ diff[0]; plain1r = plain0r ^ diff[1];\n",
+    "  print(plain0l)\n",
+    "  print(plain0r)\n",
+    "  num_rand_samples = np.sum(Y==0);\n",
+    "  plain1l[Y==0] = np.frombuffer(urandom(2*num_rand_samples),dtype=np.uint16);\n",
+    "  plain1r[Y==0] = np.frombuffer(urandom(2*num_rand_samples),dtype=np.uint16);\n",
+    "  \n",
+    "  round_key = generate_round_keys(n)\n",
+    "  \n",
+    "  ctdata0l, ctdata0r = lcb_encrypt((plain0l, plain0r), round_key, nr, n)\n",
+    "  counter = 0\n",
+    "  ctdata1l, ctdata1r = lcb_encrypt((plain1l, plain1r), round_key, nr, n)\n",
+    "  print(\"All encryption done\")\n",
+    "\n",
+    "  ctdata = np.vstack((ctdata0l, ctdata0r, ctdata1l, ctdata1r)).T\n",
+    "  X = np.array([convert_to_binary(row) for row in ctdata])\n",
+    "  #print(X)\n",
+    "  \"\"\"\n",
+    "  with open(\"Dataset_NewP.csv\", \"w\", newline='') as f:\n",
+    "    writer = csv.writer(f)\n",
+    "    writer.writerow([\"plain0l\", \"plain0r\", \"plain1l\", \"plain1r\",\"Y\"])\n",
+    "    for i in range(n):\n",
+    "        writer.writerow([plain0l[i], plain0r[i], plain1l[i], plain1r[i],Y[i]])\n",
+    "\n",
+    "    with open(\"Dataset_NewC.csv\", \"w\", newline='') as f:\n",
+    "      writer = csv.writer(f)\n",
+    "      writer.writerow([\"ctdata0l\", \"ctdata0r\", \"ctdata1l\", \"ctdata1r\",\"Y\"])\n",
+    "      for i in range(n):\n",
+    "          writer.writerow([ctdata0l[i], ctdata0r[i], ctdata1l[i], ctdata1r[i],Y[i]])\n",
+    "  \"\"\"\n",
+    "  return(X,Y);"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 48,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "#13#Creation of Model\n",
+    "\n",
+    "from pickle import dump\n",
+    "from sklearn.model_selection import KFold\n",
+    "from keras.callbacks import ModelCheckpoint, LearningRateScheduler\n",
+    "from keras.models import Model\n",
+    "from keras.optimizers import Adam, SGD\n",
+    "from keras.layers import Dense, Conv1D, Input, Reshape, Permute, Add, Flatten, BatchNormalization, Activation\n",
+    "from keras import backend as K\n",
+    "from keras.regularizers import l2\n",
+    "from keras.layers import Dropout\n",
+    "\n",
+    "dropout_rate = 0.5;\n",
+    "bs = 2000;\n",
+    "wdir = './Final_h5_file/'\n",
+    "\n",
+    "def cyclic_lr(num_epochs, high_lr, low_lr):\n",
+    "  res = lambda i: low_lr + ((num_epochs-1) - i % num_epochs)/(num_epochs-1) * (high_lr - low_lr);\n",
+    "  return(res);\n",
+    "\n",
+    "def make_checkpoint(datei):\n",
+    "  res = ModelCheckpoint(datei, monitor='val_loss', save_best_only = True);\n",
+    "  return(res);\n",
+    "\n",
+    "#make residual tower of convolutional blocks\n",
+    "def make_resnet(num_blocks=2, num_filters=32, num_outputs=1, d1=64, d2=64, word_size=16, ks=3,depth=5, reg_param=0.0001, final_activation='sigmoid'):\n",
+    "  #Input and preprocessing layers\n",
+    "  inp = Input(shape=(num_blocks * word_size * 2,));\n",
+    "  rs = Reshape((2 * num_blocks, word_size))(inp);\n",
+    "  perm = Permute((2,1))(rs);\n",
+    "  #add a single residual layer that will expand the data to num_filters channels\n",
+    "  #this is a bit-sliced layer\n",
+    "  conv0 = Conv1D(num_filters, kernel_size=1, padding='same', kernel_regularizer=l2(reg_param))(perm);\n",
+    "  conv0 = BatchNormalization()(conv0);\n",
+    "  conv0 = Activation('relu')(conv0);\n",
+    "  #add residual blocks\n",
+    "  shortcut = conv0;\n",
+    "  for i in range(depth):\n",
+    "    conv1 = Conv1D(num_filters, kernel_size=ks, padding='same', kernel_regularizer=l2(reg_param))(shortcut);\n",
+    "    conv1 = BatchNormalization()(conv1);\n",
+    "    conv1 = Activation('relu')(conv1);\n",
+    "    conv2 = Conv1D(num_filters, kernel_size=ks, padding='same',kernel_regularizer=l2(reg_param))(conv1);\n",
+    "    conv2 = BatchNormalization()(conv2);\n",
+    "    conv2 = Activation('relu')(conv2);\n",
+    "    conv2 = Dropout(dropout_rate)(conv2)\n",
+    "    shortcut = Add()([shortcut, conv2]);\n",
+    "    \n",
+    "  #add prediction head\n",
+    "  flat1 = Flatten()(shortcut);\n",
+    "  dense1 = Dense(d1,kernel_regularizer=l2(reg_param))(flat1);\n",
+    "  dense1 = BatchNormalization()(dense1);\n",
+    "  dense1 = Activation('relu')(dense1);\n",
+    "  dense1 = Dropout(dropout_rate)(dense1)  # Add dropout layer after the first dense layer\n",
+    "  dense2 = Dense(d2, kernel_regularizer=l2(reg_param))(dense1);\n",
+    "  dense2 = Dropout(dropout_rate)(dense2)\n",
+    "  dense2 = BatchNormalization()(dense2);\n",
+    "  dense2 = Activation('relu')(dense2);\n",
+    "  out = Dense(num_outputs, activation=final_activation, kernel_regularizer=l2(reg_param))(dense2);\n",
+    "  model = Model(inputs=inp, outputs=out);\n",
+    "  return(model);\n",
+    "\n",
+    "def train_LCB_distinguisher(num_epochs, num_rounds, depth):\n",
+    "    #create the network\n",
+    "    print(num_rounds)\n",
+    "    print(depth)\n",
+    "    net = make_resnet(depth=depth, reg_param=0.00007);\n",
+    "    opt = SGD(learning_rate=0.00001, momentum=0.5)\n",
+    "    net.compile(optimizer= opt,loss='binary_crossentropy',metrics=['acc']);\n",
+    "    #net.compile(optimizer='adam',loss='binary_crossentropy',metrics=['acc']);\n",
+    "    #generate training and validation data\n",
+    "    X, Y = make_train_data(10000000,num_rounds);\n",
+    "    X_eval, Y_eval = make_train_data(1000000, num_rounds);\n",
+    "    #set up model checkpoint\n",
+    "    check = make_checkpoint(wdir+'FINAL_SECURE_'+str(num_rounds)+'_depth_'+str(depth)+'.h5');\n",
+    "    #create learnrate schedule\n",
+    "    lr = LearningRateScheduler(cyclic_lr(10,0.00004, 0.000019));\n",
+    "    #train and evaluate\n",
+    "    #print(X_eval)\n",
+    "    h = net.fit(X,Y,epochs=num_epochs,batch_size=bs,validation_data=(X_eval, Y_eval), callbacks=[lr,check]);\n",
+    "    np.save(wdir+'h'+str(num_rounds)+'r_depth'+str(depth)+'.npy', h.history['val_acc']);\n",
+    "    np.save(wdir+'h'+str(num_rounds)+'r_depth'+str(depth)+'.npy', h.history['val_loss']);\n",
+    "    dump(h.history,open(wdir+'hist'+str(num_rounds)+'r_depth'+str(depth)+'.p','wb'));\n",
+    "    print(\"Best validation accuracy: \", np.max(h.history['val_acc']));\n",
+    "    return(net, h);\n",
+    "\n"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 49,
+   "metadata": {
+    "scrolled": true
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "20\n",
+      "3\n",
+      "[13182  2913 24737 ... 62401 10591 23589]\n",
+      "[49387 49338 18711 ... 59833 42322 63243]\n",
+      "Encryption done per round\n",
+      "Encryption done per round\n",
+      "All encryption done\n",
+      "[31785 45398  1696 ...  3215 62633  4958]\n",
+      "[43601 25042 12208 ... 26164  4492 32270]\n",
+      "Encryption done per round\n",
+      "Encryption done per round\n",
+      "All encryption done\n",
+      "Epoch 1/30\n",
+      "5000/5000 [==============================] - 548s 109ms/step - loss: 0.7906 - acc: 0.4983 - val_loss: 0.7267 - val_acc: 0.5008 - lr: 4.0000e-05\n",
+      "Epoch 2/30\n",
+      "5000/5000 [==============================] - 554s 111ms/step - loss: 0.7498 - acc: 0.5286 - val_loss: 0.7254 - val_acc: 0.5005 - lr: 3.7667e-05\n",
+      "Epoch 3/30\n",
+      "5000/5000 [==============================] - 558s 112ms/step - loss: 0.7037 - acc: 0.5777 - val_loss: 0.7262 - val_acc: 0.5005 - lr: 3.5333e-05\n",
+      "Epoch 4/30\n",
+      "5000/5000 [==============================] - 565s 113ms/step - loss: 0.6467 - acc: 0.6458 - val_loss: 0.7289 - val_acc: 0.5006 - lr: 3.3000e-05\n",
+      "Epoch 5/30\n",
+      "5000/5000 [==============================] - 566s 113ms/step - loss: 0.5843 - acc: 0.7248 - val_loss: 0.7334 - val_acc: 0.5005 - lr: 3.0667e-05\n",
+      "Epoch 6/30\n",
+      "5000/5000 [==============================] - 567s 113ms/step - loss: 0.5266 - acc: 0.7962 - val_loss: 0.7396 - val_acc: 0.5001 - lr: 2.8333e-05\n",
+      "Epoch 7/30\n",
+      "5000/5000 [==============================] - 566s 113ms/step - loss: 0.4780 - acc: 0.8504 - val_loss: 0.7467 - val_acc: 0.5002 - lr: 2.6000e-05\n",
+      "Epoch 8/30\n",
+      "5000/5000 [==============================] - 573s 115ms/step - loss: 0.4380 - acc: 0.8877 - val_loss: 0.7544 - val_acc: 0.5001 - lr: 2.3667e-05\n",
+      "Epoch 9/30\n",
+      "5000/5000 [==============================] - 573s 115ms/step - loss: 0.4061 - acc: 0.9115 - val_loss: 0.7618 - val_acc: 0.5000 - lr: 2.1333e-05\n",
+      "Epoch 10/30\n",
+      "5000/5000 [==============================] - 565s 113ms/step - loss: 0.3803 - acc: 0.9271 - val_loss: 0.7685 - val_acc: 0.5001 - lr: 1.9000e-05\n",
+      "Epoch 11/30\n",
+      "5000/5000 [==============================] - 565s 113ms/step - loss: 0.3476 - acc: 0.9420 - val_loss: 0.7845 - val_acc: 0.5000 - lr: 4.0000e-05\n",
+      "Epoch 12/30\n",
+      "5000/5000 [==============================] - 569s 114ms/step - loss: 0.3110 - acc: 0.9546 - val_loss: 0.8003 - val_acc: 0.5002 - lr: 3.7667e-05\n",
+      "Epoch 13/30\n",
+      "5000/5000 [==============================] - 566s 113ms/step - loss: 0.2826 - acc: 0.9620 - val_loss: 0.8148 - val_acc: 0.5002 - lr: 3.5333e-05\n",
+      "Epoch 14/30\n",
+      "5000/5000 [==============================] - 569s 114ms/step - loss: 0.2600 - acc: 0.9669 - val_loss: 0.8288 - val_acc: 0.5003 - lr: 3.3000e-05\n",
+      "Epoch 15/30\n",
+      "5000/5000 [==============================] - 568s 114ms/step - loss: 0.2419 - acc: 0.9704 - val_loss: 0.8424 - val_acc: 0.5002 - lr: 3.0667e-05\n",
+      "Epoch 16/30\n",
+      "5000/5000 [==============================] - 571s 114ms/step - loss: 0.2271 - acc: 0.9731 - val_loss: 0.8532 - val_acc: 0.5001 - lr: 2.8333e-05\n",
+      "Epoch 17/30\n",
+      "5000/5000 [==============================] - 571s 114ms/step - loss: 0.2149 - acc: 0.9753 - val_loss: 0.8656 - val_acc: 0.5001 - lr: 2.6000e-05\n",
+      "Epoch 18/30\n",
+      "5000/5000 [==============================] - 567s 113ms/step - loss: 0.2049 - acc: 0.9770 - val_loss: 0.8737 - val_acc: 0.5001 - lr: 2.3667e-05\n",
+      "Epoch 19/30\n",
+      "5000/5000 [==============================] - 566s 113ms/step - loss: 0.1966 - acc: 0.9783 - val_loss: 0.8828 - val_acc: 0.5001 - lr: 2.1333e-05\n",
+      "Epoch 20/30\n",
+      "5000/5000 [==============================] - 566s 113ms/step - loss: 0.1896 - acc: 0.9795 - val_loss: 0.8920 - val_acc: 0.5001 - lr: 1.9000e-05\n",
+      "Epoch 21/30\n",
+      "5000/5000 [==============================] - 568s 114ms/step - loss: 0.1805 - acc: 0.9810 - val_loss: 0.9073 - val_acc: 0.5000 - lr: 4.0000e-05\n",
+      "Epoch 22/30\n",
+      "5000/5000 [==============================] - 568s 114ms/step - loss: 0.1696 - acc: 0.9827 - val_loss: 0.9234 - val_acc: 0.5000 - lr: 3.7667e-05\n",
+      "Epoch 23/30\n",
+      "5000/5000 [==============================] - 569s 114ms/step - loss: 0.1605 - acc: 0.9842 - val_loss: 0.9369 - val_acc: 0.5000 - lr: 3.5333e-05\n",
+      "Epoch 24/30\n",
+      "5000/5000 [==============================] - 570s 114ms/step - loss: 0.1529 - acc: 0.9853 - val_loss: 0.9508 - val_acc: 0.5001 - lr: 3.3000e-05\n",
+      "Epoch 25/30\n",
+      "5000/5000 [==============================] - 570s 114ms/step - loss: 0.1464 - acc: 0.9862 - val_loss: 0.9615 - val_acc: 0.5000 - lr: 3.0667e-05\n",
+      "Epoch 26/30\n",
+      "5000/5000 [==============================] - 570s 114ms/step - loss: 0.1410 - acc: 0.9870 - val_loss: 0.9729 - val_acc: 0.5000 - lr: 2.8333e-05\n",
+      "Epoch 27/30\n",
+      "5000/5000 [==============================] - 571s 114ms/step - loss: 0.1364 - acc: 0.9878 - val_loss: 0.9803 - val_acc: 0.5000 - lr: 2.6000e-05\n",
+      "Epoch 28/30\n",
+      "5000/5000 [==============================] - 569s 114ms/step - loss: 0.1324 - acc: 0.9884 - val_loss: 0.9913 - val_acc: 0.5001 - lr: 2.3667e-05\n",
+      "Epoch 29/30\n",
+      "5000/5000 [==============================] - 569s 114ms/step - loss: 0.1290 - acc: 0.9888 - val_loss: 0.9994 - val_acc: 0.5001 - lr: 2.1333e-05\n",
+      "Epoch 30/30\n",
+      "5000/5000 [==============================] - 568s 114ms/step - loss: 0.1260 - acc: 0.9893 - val_loss: 1.0050 - val_acc: 0.5000 - lr: 1.9000e-05\n",
+      "Best validation accuracy:  0.5007830262184143\n"
+     ]
+    }
+   ],
+   "source": [
+    "#14#Training the Model\n",
+    "#1crore, 10lakhs, bs2000\n",
+    "num_epochs = 30\n",
+    "depth = 3\n",
+    "trained_net, history = train_LCB_distinguisher(num_epochs, num_rounds, depth)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 50,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "FINAL_SECURE_20_depth_3.json\n"
+     ]
+    }
+   ],
+   "source": [
+    "#15#Create JSON File \n",
+    "# Convert the model architecture to JSON format\n",
+    "import json\n",
+    "from keras.models import model_from_json\n",
+    "model_json = trained_net.to_json()\n",
+    "\n",
+    "    # Save the model architecture as a JSON file (optional)\n",
+    "filename = f'FINAL_SECURE_20_depth_3.json'\n",
+    "print(filename)\n",
+    "with open(filename, \"w\") as json_file:\n",
+    "    json.dump(json.loads(model_json), json_file, indent=4)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 169,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "#16#Evaluate Function\n",
+    "def evaluate(net,X,Y):\n",
+    "    Z = net.predict(X,batch_size=4000).flatten();\n",
+    "    Zbin = (Z > 0.5);\n",
+    "    diff = Y - Z; mse = np.mean(diff*diff);\n",
+    "    n = len(Z); n0 = np.sum(Y==0); n1 = np.sum(Y==1);\n",
+    "    acc = np.sum(Zbin == Y) / n;\n",
+    "    tpr = np.sum(Zbin[Y==1]) / n1;\n",
+    "    tnr = np.sum(Zbin[Y==0] == 0) / n0;\n",
+    "    mreal = np.median(Z[Y==1]);\n",
+    "    high_random = np.sum(Z[Y==0] > mreal) / n0;\n",
+    "    print(\"Accuracy: \", acc, \"TPR: \", tpr, \"TNR: \", tnr, \"MSE:\", mse);\n",
+    "    print(\"Percentage of random pairs with score higher than median of real pairs:\", 100*high_random);"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 170,
+   "metadata": {
+    "scrolled": false
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Key generation done\n",
+      "Encryption done per round\n",
+      "Encryption done per round\n",
+      "All encryption done\n",
+      "[[1 0 1 ... 0 1 1]\n",
+      " [0 1 0 ... 0 1 1]\n",
+      " [1 0 1 ... 1 0 0]\n",
+      " ...\n",
+      " [1 0 0 ... 0 0 1]\n",
+      " [1 0 1 ... 1 1 0]\n",
+      " [1 1 1 ... 1 1 0]]\n",
+      "25/25 [==============================] - 1s 40ms/step\n",
+      "Accuracy:  0.96585 TPR:  1.0 TNR:  0.9312143734767458 MSE: 0.03562397\n",
+      "Percentage of random pairs with score higher than median of real pairs: 0.0\n"
+     ]
+    }
+   ],
+   "source": [
+    "#17#Evaluate Function Call\n",
+    "import numpy as np\n",
+    "\n",
+    "from keras.models import model_from_json\n",
+    "\n",
+    "#load distinguishers\n",
+    "json_file = open('Vul_Best_20_depth_3.json','r');\n",
+    "json_model = json_file.read();\n",
+    "\n",
+    "net20 = model_from_json(json_model);\n",
+    "\n",
+    "net20.load_weights('Vul_Best_10_depth_3.h5');\n",
+    "\n",
+    "X_test_stacked, Y_test_stacked = make_train_data(100000, num_rounds)\n",
+    "evaluate(net20, X_test_stacked, Y_test_stacked);\n"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": []
+  }
+ ],
+ "metadata": {
+  "kernelspec": {
+   "display_name": "Python 3 (ipykernel)",
+   "language": "python",
+   "name": "python3"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.9.13"
+  },
+  "vscode": {
+   "interpreter": {
+    "hash": "31f2aee4e71d21fbe5cf8b01ff0e069b9275f58929596ceb00d14d90e3e16cd6"
+   }
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2
+}
-- 
GitLab