diff --git a/regula_falsi.m b/regula_falsi.m
new file mode 100644
index 0000000000000000000000000000000000000000..eb7fba980740e8007b34ebb3e2231f35097690a7
--- /dev/null
+++ b/regula_falsi.m
@@ -0,0 +1,54 @@
+%clear all
+%Regula-Falsi method to a find root of f(x)=0 when the initial 
+%guess is given
+f1 = input('Enter the function f(x): ','s'); 
+f = inline(f1);
+x(1) = input('Enter the first initial approximation/guess = ');
+x(2)=  input('Enter the second initial approximation/guess = ');
+max_itr = input('Enter the maximum no. of iterations = ');
+tol = input('Enter the tolerance = ');
+ 
+% Regula-Falsi method main program
+
+fprintf('x(1)= %f\n',  x(1));   % print the initial value
+fprintf('x(2)= %f\n',  x(2));   % print the initial value
+
+for i=2:max_itr-1 % Note: repeat until max_itr starting with zero
+    
+     x(i+1)= x(i)-((x(i)-x(i-1))/(f(x(i))-f(x(i-1))))*f(x(i)); 
+      
+     % print the approximate value in each iteration
+     fprintf(' x(%d)= %f\n',i+1, x(i+1));
+    
+     err= x(i+1)-x(i);
+     
+   if(abs(err)<=tol)
+     %ouput for the required tolerence
+     fprintf('The  approximate root after %d iterations is %f ',i+1, x(i+1));
+     break;
+   end
+end
+
+if(abs(err)>tol)
+      %output when the given iterations are not sufficient
+   fprintf('Insufficient no. of iterations');
+end
+
+
+ %%------------------------------------------------------------------------------ 
+ %OUTPUT
+% Enter the function f(x): x^3-2*x-3
+% Enter the first initial approximation/guess = 0
+% Enter the second initial approximation/guess = 2
+% Enter the maximum no. of iterations = 10
+% Enter the tolerance = 0.01
+% x(1)= 0.000000
+% x(2)= 2.000000
+% x(3)= 1.500000
+% x(4)= 1.862069
+% x(5)= 1.903201
+% x(6)= 1.893086
+% x(7)= 1.893288
+% The  approximate root after 7 iterations is 1.893288
+ %%------------------------------------------------------------------------------ 
+