function TDD = divided_difference(X, Y) % % TDD = divdiff(X, Y) % % DIVDIFF % Newton's Method for Divided Differences. % % The following formula is solved: % Pn(x) = f(x0) + f[x0,x1](x-x0) + f[x0,x1,x2](x-x0)(x-x1) + ... % + f[x0,x1,..,xn](x-x0)(x-x1)..(x-x[n-1]) % where f[x0,x1] = (f(x1-f(x0))/(x1-x0) % f[x0,x1,..,xn] = (f[x1,..,xn]-f[x0,..,x_[n-1]])/(xn-x0) % % NOTE: f^(n+1)(csi)/(n+1)! aprox. = f[x0,x1,..,xn,x_[n+1]] % % Input:: % X = [ x0 x1 .. xn ] - object vector % Y = [ y0 y1 .. yn ] - image vector % % Output: % TDD - table of divided differences % % Example: % TDD = divdiff( [ 1.35 1.37 1.40 1.45 ], [ .1303 .1367 .1461 .1614 ]) % % Author: Tashi Ravach % Version: 1.0 % Date: 22/05/2006 % if nargin ~= 2 error('divdiff: invalid input parameters'); end [ p, m ] = size(X); % m points, polynomial order <= m-1 if p ~= 1 || p ~=size(Y, 1) || m ~= size(Y, 2) error('divdiff: input vectors must have the same dimension'); end TDD = zeros(m, m); TDD(:, 1) = Y'; for j = 2 : m for i = 1 : (m - j + 1) TDD(i,j) = (TDD(i + 1, j - 1) - TDD(i, j - 1)) / (X(i + j - 1) - X(i)); end end end