% Improved Euler Method to find an approximate solution of y'=f(x,y) % with y(x(0))=y(0) clear all %input f_in = input('Enter the function f(x,y) = ','s'); f = inline(f_in); x(1) = input('Enter the initial value of x = '); y(1) = input('Enter the initial value of y = '); h = input('Enter the step length h = '); xn = input('enter the x value for which y is to be evaluated = '); % main program x = x(1):h:xn; % generating x values N=length(x); % number of iterations to be performed fprintf('itr \t x(i) \t y(i)\n') for i=1:N fprintf('%d\t %f\t %f\n',i-1, x(i), y(i)); % print (x, y) in each iteration k1=h*(f(x(i),y(i))); k2= h*f(x(i)+h,y(i)+k1); % avoids repeated calculations y(i+1)= y(i)+(k1+k2)/2; % y(i+1) by Improved EM end % simply you can print by using [x', y'] at the end by taking proper care % in the index !! % OUTPUT 1 -------------------------------------------------------------- % Enter the function f(x,y) = x+y % Enter the initial value of x = 0 % Enter the initial value of y = 1 % Enter the step length h = .2 % enter the x value for which y is to be evaluated = 1 % itr x(i) y(i) % 0 0.000000 1.000000 % 1 0.200000 1.240000 % 2 0.400000 1.576800 % 3 0.600000 2.031696 % 4 0.800000 2.630669 % 5 1.000000 3.405416 % OUTPUT 2 -------------------------------------------------------------- % Enter the function f(x,y) = (y-x)/(y+x) % Enter the initial value of x = 0 % Enter the initial value of y = 1 % Enter the step length h = 0.02 % enter the x value for which y is to be evaluated = 0.1 % itr x(i) y(i) % 0 0.000000 1.000000 % 1 0.020000 1.019615 % 2 0.040000 1.038489 % 3 0.060000 1.056673 % 4 0.080000 1.074213 % 5 0.100000 1.091148 % OUTPUT 3 -------------------------------------------------------------- % Enter the function f(x,y) = x*(x+y^2) % Enter the initial value of x = 1 % Enter the initial value of y = 1 % Enter the step length h = .1 % enter the x value for which y is to be evaluated = 1.3 % itr x(i) y(i) % 0 1.000000 1.000000 % 1 1.100000 1.239700 % 2 1.200000 1.597136 % 3 1.300000 2.179113 % OUTPUT 4 -------------------------------------------------------------- % Enter the function f(x,y) = x^2*(x+y) % Enter the initial value of x = 1 % Enter the initial value of y = 1 % Enter the step length h = .1 % enter the x value for which y is to be evaluated = 1.3 % itr x(i) y(i) % 0 1.000000 1.000000 % 1 1.100000 1.239150 % 2 1.200000 1.576666 % 3 1.300000 2.053451