% clc % clear all disp('Fixed Point method to a find root of f(x)=0 when the initial guess is given'); %input Note: Convert f(x)=0 interms of x=g(x) g1 = input('Enter the function g(x): ','s'); g = inline(g1); x(1) = input('Enter the initial approximation/guess such that |g`(x)|<1 = '); max_itr = input('Enter the maximum no. of iterations = '); tol = input('Enter the tolerance = '); % Fixed Point method main program fprintf(' x(1)= %f\n', x(1)); % print the initial 'value for i=1:max_itr-1 % Note: repeat until max_itr starting %with zero x(i+1)= g(x(i)); % print the approximate value in each iteration fprintf(' x(%d)= %f\n',i+1, x(i+1)); err= x(i+1)-x(i); if(abs(err)<=tol) %ouput for the required tolerence fprintf('The approximate root after %d iterations is%f',i+1, x(i+1)); break; end end if(abs(err)>tol) %output when the given iterations are not sufficient fprintf('Insufficient no. of iterations'); end % ------------------------------------------------------------------------------ % OUTPUT 1 % Fixed Point method to a find root of f(x)=0 when the initial guess is given % Enter the function g(x): 1/(x^2+1) % Enter the initial approximation/guess such that |g`(x)|<1 = %0.5 % Enter the maximum no. of iterations = 5 % Enter the tolerance = .1 % x(1)= 0.500000 % x(2)= 0.800000 % x(3)= 0.609756 % x(4)= 0.728968 % x(5)= 0.653000 % The approximate root after 5 iterations is 0.653000>> % ------------------------------------------------------------------------------ % OUTPUT 2 % Enter the function g(x): 1/(x^2+1) % Enter the initial approximation/guess such that |g`(x)|<1 = 0.5 % Enter the maximum no. of iterations = 5 % Enter the tolerance = .01 % x(1)= 0.500000 % x(2)= 0.800000 % x(3)= 0.609756 % x(4)= 0.728968 % x(5)= 0.653000 % Insufficient no. of iterations>> % ------------------------------------------------------------------------------ % OUTPUT 3 % Fixed Point method to a find root of f(x)=0 when the initial guess is given % Enter the function g(x): 1/(x^2+1) % Enter the initial approximation/guess such that |g`(x)|<1 = 0.5 % Enter the maximum no. of iterations = 20 % Enter the tolerance = .01 % x(1)= 0.500000 % x(2)= 0.800000 % x(3)= 0.609756 % x(4)= 0.728968 % x(5)= 0.653000 % x(6)= 0.701061 % x(7)= 0.670472 % x(8)= 0.689878 % x(9)= 0.677538 % x(10)= 0.685374 % The approximate root after 10 iterations is 0.685374>> % % ------------------------------------------------------------------------------ % OUTPUT 3 % Fixed Point method to a find root of f(x)=0 when the initial guess is given % Enter the function g(x): 1/(x^2+1) % Enter the initial approximation/guess such that |g`(x)|<1 = 0.5 % Enter the maximum no. of iterations = 20 % Enter the tolerance = .00001 % x(1)= 0.500000 % x(2)= 0.800000 % x(3)= 0.609756 % x(4)= 0.728968 % x(5)= 0.653000 % x(6)= 0.701061 % x(7)= 0.670472 % x(8)= 0.689878 % x(9)= 0.677538 % x(10)= 0.685374 % x(11)= 0.680394 % x(12)= 0.683557 % x(13)= 0.681547 % x(14)= 0.682824 % x(15)= 0.682013 % x(16)= 0.682528 % x(17)= 0.682201 % x(18)= 0.682409 % x(19)= 0.682276 % x(20)= 0.682360 % Insufficient no. of iterations>>