diff --git a/deep_auto_encoder.ipynb b/deep_auto_encoder.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..c2f2225ffb0e21f929bbfc550edc8ea8bfdd4a46
--- /dev/null
+++ b/deep_auto_encoder.ipynb
@@ -0,0 +1,496 @@
+{
+  "nbformat": 4,
+  "nbformat_minor": 0,
+  "metadata": {
+    "colab": {
+      "name": "deep_auto_encoder.ipynb",
+      "version": "0.3.2",
+      "provenance": []
+    },
+    "kernelspec": {
+      "name": "python3",
+      "display_name": "Python 3"
+    }
+  },
+  "cells": [
+    {
+      "metadata": {
+        "id": "kNQSuiScash4",
+        "colab_type": "code",
+        "colab": {}
+      },
+      "cell_type": "code",
+      "source": [
+        "from keras.datasets import mnist\n",
+        "from keras.layers import Input, Dense\n",
+        "from keras.models import Model"
+      ],
+      "execution_count": 0,
+      "outputs": []
+    },
+    {
+      "metadata": {
+        "id": "LVwNL6BFayAC",
+        "colab_type": "code",
+        "colab": {}
+      },
+      "cell_type": "code",
+      "source": [
+        "import numpy as np\n",
+        "import pandas as pd\n",
+        "import matplotlib.pyplot as plt\n",
+        "%matplotlib inline"
+      ],
+      "execution_count": 0,
+      "outputs": []
+    },
+    {
+      "metadata": {
+        "id": "-zIjjlWHa2L5",
+        "colab_type": "code",
+        "colab": {}
+      },
+      "cell_type": "code",
+      "source": [
+        "(X_train, _), (X_test, _) = mnist.load_data()"
+      ],
+      "execution_count": 0,
+      "outputs": []
+    },
+    {
+      "metadata": {
+        "id": "Y-Cdl5rja23s",
+        "colab_type": "code",
+        "colab": {}
+      },
+      "cell_type": "code",
+      "source": [
+        "X_train = X_train.astype('float32')/255\n",
+        "X_test = X_test.astype('float32')/255"
+      ],
+      "execution_count": 0,
+      "outputs": []
+    },
+    {
+      "metadata": {
+        "id": "WD3WTHVna4-b",
+        "colab_type": "code",
+        "outputId": "09d9e53a-ead8-4114-b815-054d6b91edd8",
+        "colab": {
+          "base_uri": "https://localhost:8080/",
+          "height": 51
+        }
+      },
+      "cell_type": "code",
+      "source": [
+        "X_train = X_train.reshape(len(X_train), np.prod(X_train.shape[1:]))\n",
+        "X_test = X_test.reshape(len(X_test), np.prod(X_test.shape[1:]))\n",
+        "print(X_train.shape)\n",
+        "print(X_test.shape)"
+      ],
+      "execution_count": 0,
+      "outputs": [
+        {
+          "output_type": "stream",
+          "text": [
+            "(60000, 784)\n",
+            "(10000, 784)\n"
+          ],
+          "name": "stdout"
+        }
+      ]
+    },
+    {
+      "metadata": {
+        "id": "2Y2O2zJXa72j",
+        "colab_type": "code",
+        "colab": {}
+      },
+      "cell_type": "code",
+      "source": [
+        "input_img= Input(shape=(784,))"
+      ],
+      "execution_count": 0,
+      "outputs": []
+    },
+    {
+      "metadata": {
+        "id": "nwsA5CURa9_V",
+        "colab_type": "code",
+        "outputId": "c06dff90-7772-4bc8-9a9c-e3d632d30dc7",
+        "colab": {
+          "base_uri": "https://localhost:8080/",
+          "height": 88
+        }
+      },
+      "cell_type": "code",
+      "source": [
+        "encoded = Dense(units=128, activation='relu')(input_img)\n",
+        "encoded = Dense(units=64, activation='relu')(encoded)\n",
+        "encoded = Dense(units=32, activation='relu')(encoded)\n",
+        "decoded = Dense(units=64, activation='relu')(encoded)\n",
+        "decoded = Dense(units=128, activation='relu')(decoded)\n",
+        "decoded = Dense(units=784, activation='sigmoid')(decoded)"
+      ],
+      "execution_count": 0,
+      "outputs": [
+        {
+          "output_type": "stream",
+          "text": [
+            "WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/tensorflow/python/framework/op_def_library.py:263: colocate_with (from tensorflow.python.framework.ops) is deprecated and will be removed in a future version.\n",
+            "Instructions for updating:\n",
+            "Colocations handled automatically by placer.\n"
+          ],
+          "name": "stdout"
+        }
+      ]
+    },
+    {
+      "metadata": {
+        "id": "ebMbt7g7bAOt",
+        "colab_type": "code",
+        "colab": {}
+      },
+      "cell_type": "code",
+      "source": [
+        "autoencoder=Model(input_img, decoded)"
+      ],
+      "execution_count": 0,
+      "outputs": []
+    },
+    {
+      "metadata": {
+        "id": "1tz9Z0V2bCbY",
+        "colab_type": "code",
+        "colab": {}
+      },
+      "cell_type": "code",
+      "source": [
+        "encoder = Model(input_img, encoded)"
+      ],
+      "execution_count": 0,
+      "outputs": []
+    },
+    {
+      "metadata": {
+        "id": "VP6gANXEbEeu",
+        "colab_type": "code",
+        "outputId": "17fcfa91-01dc-4448-f165-952e1704aca4",
+        "colab": {
+          "base_uri": "https://localhost:8080/",
+          "height": 374
+        }
+      },
+      "cell_type": "code",
+      "source": [
+        "autoencoder.summary()"
+      ],
+      "execution_count": 0,
+      "outputs": [
+        {
+          "output_type": "stream",
+          "text": [
+            "_________________________________________________________________\n",
+            "Layer (type)                 Output Shape              Param #   \n",
+            "=================================================================\n",
+            "input_1 (InputLayer)         (None, 784)               0         \n",
+            "_________________________________________________________________\n",
+            "dense_1 (Dense)              (None, 128)               100480    \n",
+            "_________________________________________________________________\n",
+            "dense_2 (Dense)              (None, 64)                8256      \n",
+            "_________________________________________________________________\n",
+            "dense_3 (Dense)              (None, 32)                2080      \n",
+            "_________________________________________________________________\n",
+            "dense_4 (Dense)              (None, 64)                2112      \n",
+            "_________________________________________________________________\n",
+            "dense_5 (Dense)              (None, 128)               8320      \n",
+            "_________________________________________________________________\n",
+            "dense_6 (Dense)              (None, 784)               101136    \n",
+            "=================================================================\n",
+            "Total params: 222,384\n",
+            "Trainable params: 222,384\n",
+            "Non-trainable params: 0\n",
+            "_________________________________________________________________\n"
+          ],
+          "name": "stdout"
+        }
+      ]
+    },
+    {
+      "metadata": {
+        "id": "rJQ7LmP-bGNn",
+        "colab_type": "code",
+        "outputId": "28fc7982-409f-4b75-f3fd-d2b6cc9f4ba5",
+        "colab": {
+          "base_uri": "https://localhost:8080/",
+          "height": 272
+        }
+      },
+      "cell_type": "code",
+      "source": [
+        "encoder.summary()"
+      ],
+      "execution_count": 0,
+      "outputs": [
+        {
+          "output_type": "stream",
+          "text": [
+            "_________________________________________________________________\n",
+            "Layer (type)                 Output Shape              Param #   \n",
+            "=================================================================\n",
+            "input_1 (InputLayer)         (None, 784)               0         \n",
+            "_________________________________________________________________\n",
+            "dense_1 (Dense)              (None, 128)               100480    \n",
+            "_________________________________________________________________\n",
+            "dense_2 (Dense)              (None, 64)                8256      \n",
+            "_________________________________________________________________\n",
+            "dense_3 (Dense)              (None, 32)                2080      \n",
+            "=================================================================\n",
+            "Total params: 110,816\n",
+            "Trainable params: 110,816\n",
+            "Non-trainable params: 0\n",
+            "_________________________________________________________________\n"
+          ],
+          "name": "stdout"
+        }
+      ]
+    },
+    {
+      "metadata": {
+        "id": "_tIMUPQNbIQO",
+        "colab_type": "code",
+        "colab": {}
+      },
+      "cell_type": "code",
+      "source": [
+        "autoencoder.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])"
+      ],
+      "execution_count": 0,
+      "outputs": []
+    },
+    {
+      "metadata": {
+        "id": "3rAbBOambKSh",
+        "colab_type": "code",
+        "outputId": "61f5fe40-d041-4059-ee04-6893747e776f",
+        "colab": {
+          "base_uri": "https://localhost:8080/",
+          "height": 1822
+        }
+      },
+      "cell_type": "code",
+      "source": [
+        "autoencoder.fit(X_train, X_train,\n",
+        "                epochs=50,\n",
+        "                batch_size=256,\n",
+        "                shuffle=True,\n",
+        "                validation_data=(X_test, X_test))"
+      ],
+      "execution_count": 0,
+      "outputs": [
+        {
+          "output_type": "stream",
+          "text": [
+            "WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/tensorflow/python/ops/math_ops.py:3066: to_int32 (from tensorflow.python.ops.math_ops) is deprecated and will be removed in a future version.\n",
+            "Instructions for updating:\n",
+            "Use tf.cast instead.\n",
+            "Train on 60000 samples, validate on 10000 samples\n",
+            "Epoch 1/50\n",
+            "60000/60000 [==============================] - 6s 108us/step - loss: 0.2495 - acc: 0.7839 - val_loss: 0.1668 - val_acc: 0.7990\n",
+            "Epoch 2/50\n",
+            "60000/60000 [==============================] - 6s 103us/step - loss: 0.1506 - acc: 0.8048 - val_loss: 0.1371 - val_acc: 0.8067\n",
+            "Epoch 3/50\n",
+            "60000/60000 [==============================] - 6s 106us/step - loss: 0.1316 - acc: 0.8086 - val_loss: 0.1251 - val_acc: 0.8100\n",
+            "Epoch 4/50\n",
+            "60000/60000 [==============================] - 6s 106us/step - loss: 0.1217 - acc: 0.8102 - val_loss: 0.1169 - val_acc: 0.8102\n",
+            "Epoch 5/50\n",
+            "60000/60000 [==============================] - 6s 105us/step - loss: 0.1157 - acc: 0.8111 - val_loss: 0.1118 - val_acc: 0.8109\n",
+            "Epoch 6/50\n",
+            "60000/60000 [==============================] - 6s 106us/step - loss: 0.1115 - acc: 0.8117 - val_loss: 0.1077 - val_acc: 0.8112\n",
+            "Epoch 7/50\n",
+            "60000/60000 [==============================] - 6s 106us/step - loss: 0.1077 - acc: 0.8123 - val_loss: 0.1050 - val_acc: 0.8118\n",
+            "Epoch 8/50\n",
+            "60000/60000 [==============================] - 7s 109us/step - loss: 0.1050 - acc: 0.8126 - val_loss: 0.1030 - val_acc: 0.8117\n",
+            "Epoch 9/50\n",
+            "60000/60000 [==============================] - 6s 107us/step - loss: 0.1031 - acc: 0.8128 - val_loss: 0.1010 - val_acc: 0.8122\n",
+            "Epoch 10/50\n",
+            "60000/60000 [==============================] - 6s 104us/step - loss: 0.1015 - acc: 0.8130 - val_loss: 0.0993 - val_acc: 0.8123\n",
+            "Epoch 11/50\n",
+            "60000/60000 [==============================] - 6s 104us/step - loss: 0.0999 - acc: 0.8132 - val_loss: 0.0995 - val_acc: 0.8117\n",
+            "Epoch 12/50\n",
+            "60000/60000 [==============================] - 6s 104us/step - loss: 0.0989 - acc: 0.8133 - val_loss: 0.0986 - val_acc: 0.8128\n",
+            "Epoch 13/50\n",
+            "60000/60000 [==============================] - 6s 104us/step - loss: 0.0979 - acc: 0.8134 - val_loss: 0.0964 - val_acc: 0.8125\n",
+            "Epoch 14/50\n",
+            "60000/60000 [==============================] - 6s 104us/step - loss: 0.0970 - acc: 0.8135 - val_loss: 0.0955 - val_acc: 0.8126\n",
+            "Epoch 15/50\n",
+            "60000/60000 [==============================] - 6s 105us/step - loss: 0.0961 - acc: 0.8135 - val_loss: 0.0955 - val_acc: 0.8126\n",
+            "Epoch 16/50\n",
+            "60000/60000 [==============================] - 6s 104us/step - loss: 0.0953 - acc: 0.8136 - val_loss: 0.0940 - val_acc: 0.8127\n",
+            "Epoch 17/50\n",
+            "60000/60000 [==============================] - 7s 111us/step - loss: 0.0946 - acc: 0.8137 - val_loss: 0.0936 - val_acc: 0.8126\n",
+            "Epoch 18/50\n",
+            "60000/60000 [==============================] - 7s 113us/step - loss: 0.0941 - acc: 0.8137 - val_loss: 0.0929 - val_acc: 0.8130\n",
+            "Epoch 19/50\n",
+            "60000/60000 [==============================] - 6s 103us/step - loss: 0.0934 - acc: 0.8138 - val_loss: 0.0923 - val_acc: 0.8128\n",
+            "Epoch 20/50\n",
+            "60000/60000 [==============================] - 6s 105us/step - loss: 0.0929 - acc: 0.8139 - val_loss: 0.0924 - val_acc: 0.8127\n",
+            "Epoch 21/50\n",
+            "60000/60000 [==============================] - 6s 104us/step - loss: 0.0924 - acc: 0.8139 - val_loss: 0.0913 - val_acc: 0.8129\n",
+            "Epoch 22/50\n",
+            "60000/60000 [==============================] - 6s 105us/step - loss: 0.0918 - acc: 0.8139 - val_loss: 0.0908 - val_acc: 0.8131\n",
+            "Epoch 23/50\n",
+            "60000/60000 [==============================] - 6s 104us/step - loss: 0.0913 - acc: 0.8140 - val_loss: 0.0906 - val_acc: 0.8129\n",
+            "Epoch 24/50\n",
+            "60000/60000 [==============================] - 6s 105us/step - loss: 0.0909 - acc: 0.8140 - val_loss: 0.0900 - val_acc: 0.8130\n",
+            "Epoch 25/50\n",
+            "60000/60000 [==============================] - 6s 105us/step - loss: 0.0905 - acc: 0.8141 - val_loss: 0.0896 - val_acc: 0.8131\n",
+            "Epoch 26/50\n",
+            "60000/60000 [==============================] - 6s 104us/step - loss: 0.0900 - acc: 0.8141 - val_loss: 0.0893 - val_acc: 0.8132\n",
+            "Epoch 27/50\n",
+            "60000/60000 [==============================] - 6s 104us/step - loss: 0.0896 - acc: 0.8142 - val_loss: 0.0893 - val_acc: 0.8130\n",
+            "Epoch 28/50\n",
+            "60000/60000 [==============================] - 6s 106us/step - loss: 0.0892 - acc: 0.8142 - val_loss: 0.0884 - val_acc: 0.8133\n",
+            "Epoch 29/50\n",
+            "60000/60000 [==============================] - 6s 105us/step - loss: 0.0889 - acc: 0.8142 - val_loss: 0.0881 - val_acc: 0.8132\n",
+            "Epoch 30/50\n",
+            "60000/60000 [==============================] - 6s 105us/step - loss: 0.0885 - acc: 0.8143 - val_loss: 0.0878 - val_acc: 0.8134\n",
+            "Epoch 31/50\n",
+            "60000/60000 [==============================] - 6s 103us/step - loss: 0.0882 - acc: 0.8143 - val_loss: 0.0877 - val_acc: 0.8134\n",
+            "Epoch 32/50\n",
+            "60000/60000 [==============================] - 6s 106us/step - loss: 0.0879 - acc: 0.8143 - val_loss: 0.0871 - val_acc: 0.8134\n",
+            "Epoch 33/50\n",
+            "60000/60000 [==============================] - 6s 106us/step - loss: 0.0876 - acc: 0.8143 - val_loss: 0.0872 - val_acc: 0.8135\n",
+            "Epoch 34/50\n",
+            "60000/60000 [==============================] - 6s 105us/step - loss: 0.0872 - acc: 0.8144 - val_loss: 0.0866 - val_acc: 0.8135\n",
+            "Epoch 35/50\n",
+            "60000/60000 [==============================] - 6s 104us/step - loss: 0.0869 - acc: 0.8144 - val_loss: 0.0860 - val_acc: 0.8135\n",
+            "Epoch 36/50\n",
+            "60000/60000 [==============================] - 6s 106us/step - loss: 0.0867 - acc: 0.8144 - val_loss: 0.0862 - val_acc: 0.8134\n",
+            "Epoch 37/50\n",
+            "60000/60000 [==============================] - 6s 105us/step - loss: 0.0866 - acc: 0.8144 - val_loss: 0.0862 - val_acc: 0.8133\n",
+            "Epoch 38/50\n",
+            "60000/60000 [==============================] - 6s 101us/step - loss: 0.0863 - acc: 0.8144 - val_loss: 0.0856 - val_acc: 0.8135\n",
+            "Epoch 39/50\n",
+            "60000/60000 [==============================] - 6s 104us/step - loss: 0.0861 - acc: 0.8145 - val_loss: 0.0856 - val_acc: 0.8134\n",
+            "Epoch 40/50\n",
+            "60000/60000 [==============================] - 6s 103us/step - loss: 0.0859 - acc: 0.8145 - val_loss: 0.0856 - val_acc: 0.8134\n",
+            "Epoch 41/50\n",
+            "60000/60000 [==============================] - 6s 102us/step - loss: 0.0858 - acc: 0.8145 - val_loss: 0.0854 - val_acc: 0.8136\n",
+            "Epoch 42/50\n",
+            "60000/60000 [==============================] - 6s 103us/step - loss: 0.0856 - acc: 0.8145 - val_loss: 0.0850 - val_acc: 0.8135\n",
+            "Epoch 43/50\n",
+            "60000/60000 [==============================] - 6s 103us/step - loss: 0.0854 - acc: 0.8145 - val_loss: 0.0848 - val_acc: 0.8135\n",
+            "Epoch 44/50\n",
+            "60000/60000 [==============================] - 6s 103us/step - loss: 0.0853 - acc: 0.8145 - val_loss: 0.0852 - val_acc: 0.8135\n",
+            "Epoch 45/50\n",
+            "60000/60000 [==============================] - 6s 102us/step - loss: 0.0852 - acc: 0.8145 - val_loss: 0.0852 - val_acc: 0.8137\n",
+            "Epoch 46/50\n",
+            "60000/60000 [==============================] - 6s 102us/step - loss: 0.0850 - acc: 0.8145 - val_loss: 0.0849 - val_acc: 0.8137\n",
+            "Epoch 47/50\n",
+            "60000/60000 [==============================] - 6s 102us/step - loss: 0.0849 - acc: 0.8146 - val_loss: 0.0844 - val_acc: 0.8135\n",
+            "Epoch 48/50\n",
+            "60000/60000 [==============================] - 6s 102us/step - loss: 0.0847 - acc: 0.8146 - val_loss: 0.0841 - val_acc: 0.8136\n",
+            "Epoch 49/50\n",
+            "60000/60000 [==============================] - 6s 102us/step - loss: 0.0846 - acc: 0.8146 - val_loss: 0.0845 - val_acc: 0.8135\n",
+            "Epoch 50/50\n",
+            "60000/60000 [==============================] - 6s 105us/step - loss: 0.0845 - acc: 0.8146 - val_loss: 0.0841 - val_acc: 0.8136\n"
+          ],
+          "name": "stdout"
+        },
+        {
+          "output_type": "execute_result",
+          "data": {
+            "text/plain": [
+              "<keras.callbacks.History at 0x7f08eaa0e160>"
+            ]
+          },
+          "metadata": {
+            "tags": []
+          },
+          "execution_count": 13
+        }
+      ]
+    },
+    {
+      "metadata": {
+        "id": "TYzVkp3WbMbf",
+        "colab_type": "code",
+        "colab": {}
+      },
+      "cell_type": "code",
+      "source": [
+        "encoded_imgs = encoder.predict(X_test)\n",
+        "predicted = autoencoder.predict(X_test)"
+      ],
+      "execution_count": 0,
+      "outputs": []
+    },
+    {
+      "metadata": {
+        "id": "y_btKd2obSMt",
+        "colab_type": "code",
+        "outputId": "2818c688-2101-4682-b625-8445cc81414d",
+        "colab": {
+          "base_uri": "https://localhost:8080/",
+          "height": 248
+        }
+      },
+      "cell_type": "code",
+      "source": [
+        "plt.figure(figsize=(40, 4))\n",
+        "for i in range(10):\n",
+        "    # display original images\n",
+        "    ax = plt.subplot(3, 20, i + 1)\n",
+        "    plt.imshow(X_test[i].reshape(28, 28))\n",
+        "    plt.gray()\n",
+        "    ax.get_xaxis().set_visible(False)\n",
+        "    ax.get_yaxis().set_visible(False)\n",
+        "    \n",
+        "    # display encoded images\n",
+        "    ax = plt.subplot(3, 20, i + 1 + 20)\n",
+        "    plt.imshow(encoded_imgs[i].reshape(8,4))\n",
+        "    plt.gray()\n",
+        "    ax.get_xaxis().set_visible(False)\n",
+        "    ax.get_yaxis().set_visible(False)\n",
+        "    # display reconstructed images\n",
+        "    ax = plt.subplot(3, 20, 2*20 +i+ 1)\n",
+        "    plt.imshow(predicted[i].reshape(28, 28))\n",
+        "    plt.gray()\n",
+        "    ax.get_xaxis().set_visible(False)\n",
+        "    ax.get_yaxis().set_visible(False)\n",
+        "  \n",
+        "    \n",
+        "plt.show()"
+      ],
+      "execution_count": 0,
+      "outputs": [
+        {
+          "output_type": "display_data",
+          "data": {
+            "image/png": "iVBORw0KGgoAAAANSUhEUgAABEMAAADnCAYAAAD1npgJAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3XeAXFX5uPEngjSl95YYCBCKJBBC\nDUgTAgQCgdAhgCBSFMQAIvzoRUEFDBiK9F5D7z0gqIFICD2hm9B7k+L+/vD73ntmd3OzuzM7u+N9\nPv9kmHNn5jLv3jLnvOc9PZqampAkSZIkSSqL73T1DkiSJEmSJNWTnSGSJEmSJKlU7AyRJEmSJEml\nYmeIJEmSJEkqFTtDJEmSJElSqcxY1NijR49SLzXT1NTUo6v3oVrGsLFjaPwaO35gDBs9hsavseMH\nxrDRY2j8Gjt+YAyNYeNr9Bgav2nHz8wQSZIkSZJUKnaGSJIkSZKkUrEzRJIkSZIklYqdIZIkSZIk\nqVTsDJEkSZIkSaViZ4gkSZIkSSqVwqV1pSIjR44EYNZZZwVgxRVXzNq22Wabim1Hjx6dPX700UcB\nuOSSSzp7FyVJkiRJasHMEEmSJEmSVCo9mpqapt3Yo8e0G0ugqampR1fvQ7U6I4ZXXXUV0DL7o60m\nT54MwIYbbgjAa6+9Vpsda0Wjx7A7HoNLL700AM899xwABxxwAACjRo2q+Wc1evygvjH83ve+lz0+\n5ZRTANh7770BePzxx7O24cOHA/Dqq692+j41egy74zFYT40ePzCGjR5D49fY8QNjaAw719xzzw1A\nz549p7lN3O/88pe/zJ6bOHEiAC+88AIATz755DRf3+gx7M7xq4ei+JkZIkmSJEmSSsWaIWqTyAaB\naWeERKYAwJ133gnAEkssAcDmm2+etS255JIA7LTTTgCcdNJJtd1ZdaqVVloJgP/85z8AvPHGG125\nO0osvPDC2eO99toLyOM0YMCArG3IkCEAnHnmmXXcOzW38sorA3D99dcD8IMf/KCq99too42yx88+\n+ywAr7/+elXvqc4R18SbbroJgP333x+As846K9vm22+/rf+OlcQCCywAwNVXXw3AX//6VwDOOeec\nbJtXXnmlJp8155xzArDOOutkz91xxx0AfP311zX5DKksNttss+zxFltsAcC6664LQJ8+fab5usj+\n6NWrV/bczDPPXLHNDDPMUKvdVAMxM0SSJEmSJJWKnSGSJEmSJKlUnCajQqussgoAW221VYu2p59+\nGsjT1N59992s7dNPPwVgpplmAuCxxx7L2vr16wfAvPPO2wl7rM7Wv39/AD777DMAxowZ05W7I2D+\n+ecH4KKLLuriPVF7bLzxxkDLVN2OSqcj7rHHHgBsv/32NXlvVS+95v35z3+uaDvjjDMAOP/887Pn\nvvjii/rsWElEkUXI719iCstbb70F1G5qTPreUbw6ztOQT1ucNGlSzT6v7OaYYw6gcur1CiusAOQF\n+52W1BhiOj3AfvvtB+RTf2edddasrUePttc0jeL/UnNmhkiSJEmSpFLplMyQKLAZvXhTpkzJ2r78\n8ksALrvsMgDefPNNwN7x7ioKMqa9rzGiEqOaU6dOnebrf/WrXwGw3HLLtWi79dZba7af6lwxugJ5\nob9LLrmkq3ZH/+cXv/gFAFtuuSUAq666apteF4X8vvOd//aHx3JyDz30UK13Ua2Yccb/Xno33XTT\nmr5vunzyQQcdBOTLLUcml7pOWkBzscUWq2i74oorgPweSbUz33zzAZWF4OeZZx4gz9D5+c9/XvPP\nPeKIIwDo3bs3kC9zDt7z1lIU4z/hhBMAWHzxxVtsE1kj7733Xv12TB2Wnh8POOCAqt4rFneI3y6q\nryhqG+fhdKZBFL6NQv9RQPyRRx7JtqnHudLMEEmSJEmSVCqdkhly8sknA8XLBEYP+SeffALUtscu\nlvqM/Rg3blzN3rtsbr75ZqByuaqI2fvvvz/d18d89e9+97udsHeql759+2aPY6Q5HWVT1zj11FOB\nvFe9rYYNG1bx76uvvgrAdtttl22TZhmottZbbz0A1lhjDSC/VlUrrYkQ2XizzTYbYGZIV4qaMIcf\nfvg0t4lMu6amprrsU5nEEtYxCpk69thja/pZyy+/fPY4MmOjrpbXzNqK7IHTTjsNyGvytHYMjRo1\nCsgzW6Ft97CqvcgQgDzrIzIBYsnpf//739k2H330EZBfw+IeFOCuu+4CYOLEiQD87W9/A2D8+PHZ\nNlF7yWtg54ss8vQ4i/vMNO7TstpqqwHwzTffZM89//zzADz88MNAZabQV199VeUe/5eZIZIkSZIk\nqVTsDJEkSZIkSaXSKdNkonDqiiuuCMCzzz6btS277LJAy7TF1VdfPdvm9ddfB1ovghQiheadd94B\n8kKfqddeew1wmkwtRBp9Wx188MFA60tZRRpb/Kvu75BDDskex9+Cx1XXue2224C8AGpbpIXjYunr\nXr16AXmBv7///e/ZNjPMMEPV+6lcWoQ4imVOnjwZgBNPPLEmnzF06NCavI9q64c//CGQL6eainuZ\n22+/va77VAYLLLAAAFtvvXWLtp/85CdAfg9ZrZgec88997Roi2kyMcVYtTFy5EggL4ZbJKaADh48\nOHsuCq7GFJpapdyrdTG9Jaa2APTr1w+oLKoJ8Nhjj2WP4/diLHvds2fPrC3KIrR3qrBqI37nx/LH\ncZxFweLUv/71LwDGjh2bPffyyy8D+W+MmJ6dLgYQx3cUnI+C/5AXXK2WmSGSJEmSJKlUOiUz5N57\n7634NxXFcUIUfOvfv3/2XPQMDRw4cJqfEcvPvfDCC0Bl9kn0IsWom+pjyJAh2eMoSjbTTDMB8Pbb\nb2dthx12GACff/55HfdOHRFFkFdZZZXsuTjmLEZVXz/60Y+yx8ssswyQj4YUjYpEz3k6GhMFydZf\nf32g9cKO++yzDwCjR4+uZrf1f2KZTchHyGKUMjJ1OiqueenfiCNl3UdrmQkhPS5VW3/4wx8A2Hnn\nnYHKotDXXHNNTT9r7bXXBmDBBRfMnrvwwgsBuPTSS2v6WWUW2YwAu+++e0XbhAkTAHjrrbey5zbc\ncMOKbeacc87scWSWXHbZZQC8+eabtd1ZAfnvgMsvvxzIs0Egz4psLaMqREZIiKx/dY2zzz47exwZ\nPc2Lo6a//5966ikAfvOb3wCtLx+/5pprAvl95/nnn5+1Rf9AHNdnnnlm1nbdddcB1Wf4mRkiSZIk\nSZJKpVMyQ9rjgw8+AOD+++9v0dZaZklzMeKSLikYvVAuY1ZfafZA9ASHNBYPPvhg3fZJ1UlHmkOt\n5lirbSI758orr8yem9YSZWltn+gxP+aYY4DWM7Fi+5/+9KcAzD///FlbLPc6yyyzAHDGGWdkbV9/\n/XX7/idKbJtttgHy+a4AkyZNAmpXdycye9JskAceeACADz/8sCafoY5bZ511WjwX9QmKlttVdWKJ\n1TgupkyZkrVVWx9i1llnBfLRzn333bfiMwH22GOPqj5DLaVZ5LPPPjuQ1yCI+5W4ZgHssMMOQB6n\nJZdcMmtbaKGFALjxxhsB2GSTTQCX3K2F73//+9njyAaP7PF33303a/v9738PmCnencXxFHU99txz\nz6ytR48eQP67IDKJTznllGybtmSRx7LYUavu6KOPztpiRkmaFVZrZoZIkiRJkqRS6fLMkI6KKuF/\n/vOfgcpVFaJehb279XHDDTcAsNFGG7Vou/jii4HK+fJqHLEKQioyBlQfM87439P0tLJBIM+22n77\n7bPn0tGXaYnMkJNOOgmAP/7xj1nbbLPNBuTxvummm7I26zG13fDhw4H8+4T8ulWtyBraaaedAPj2\n22+ztuOPPx4wi6crxTzo+DcVo2X//Oc/67pPZbbZZptlj6NWS2ROtaU2Upop2dpKiADXXntttbup\nAjPPPHP2OLJwTj311Ipt0poEF1xwAZCfh5dYYokW7xlZCa4mUztbbrll9vjXv/41kNf6iPo6kNcv\nU/cV57pYJTSyQSBfISZmaaQrEk5LulJhrBobvxVjpcR0tkeIz73kkkuy52qV+WpmiCRJkiRJKhU7\nQyRJkiRJUqk07DSZ/fbbD8gL/kUhVoDnn3++S/apbBZeeGEgTwFO0xcjRT9StatdOlL1Fam/sXTd\n+PHjs7a77767S/ZJLUUBzijU15apMa2JKTAx3QKKlzbX9MUSjs3T6KF2yxVH4duYQpUuMd9aUXLV\nV9Ex5JLVne/0008HYL311gNgkUUWydqiqG2kXm+xxRbTfb80PTwtlArw0ksvAXmhTnWOKIiaiulP\nMWW7NWmB/+Yee+wxwPvUWmptamDcR77xxhv13h1VIaa1pNNwwzfffAPAaqutBuQF4/v27dti2y++\n+AKAZZddNnsuHse9a7o0eXOxtG78roTaTQM2M0SSJEmSJJVKw2WGrLXWWkBekCekxXomTpxY130q\nq1i6M5ZESl166aWAhRYb1YYbbgjAPPPMA+RLW0FlcTLVT1okOkRvfLVixDP9jOafly51tssuu9Tk\nc/+XRabcoosuCsAVV1xR889Il4kEr33dTfPR6LTYm5khne/xxx8HYMUVVwQql2UdPHgwkBcFjKUh\nL7roomm+X1q478knn6xo++tf/wp4z9PZ0vNoZPNEBlaMRqeF37faaisgL8iYHoPx3F577QXk8X3m\nmWc6Zd/LJDIEUnHMHXXUUdlzsayxhaS7r/vuuw/Is03j9wFAz549AfjTn/4EtMyYgzyjJC2c2lzz\njJBYDh1gzJgxAPziF78AYOrUqe37H2gDM0MkSZIkSVKp9GitFydr7NFj2o1d5IQTTgDgsMMOA+De\ne+8FYNNNN822qdUcoqamph7T36p764wYRm/81VdfDcB3v/tdAB544IFsm6FDhwJdPwez0WPYVcfg\nNddcA+TLZcW/kPfS1kOjxw+qj+Hvf/97AA444IAWbXHsVevnP/85ULm0bmSGRA99Oge0PaOfjR7D\njsZv1llnBWDs2LFAZayihkFHl3+PpeWbj5DEyAnAmWee2aH3bq7R4wf1PY8OGjQoexxLXsexFEtZ\nQ74scj00egy7y71ouizrpEmTgHxEe+ONNwbyDJNaavT4Qe1iGNmqkMcg6jNFhmNrv2vuueceIK83\nCHDLLbcAsNRSSwFw7rnnAvCzn/2sFrtaoWwxTGOQjvI3F21nnXUWkNdviYwDyOP89NNPt3j98ssv\nD8Cjjz4KdG49kkaPYa2Owbnmmit7HLM0YtbGe++9B+TLKEOeJduvXz8AVl111el+Rvw9QF6Hqdpl\ndIviZ2aIJEmSJEkqFTtDJEmSJElSqTREAdVIN4a8AM9XX30F5IV4ajU1Rq1Li6RGylLzFP20AFJX\nT49R+y200ELZ47XXXhvIl6mu59QYVdp8881r/p6xJPlyyy0HFC8HGWnfnmPbJ5aRiylF6VSzW2+9\nFaicljQtK6ywAlCZoh9TLJqngxelI6s+0mtl8yLELkve2I488sjscRx7hx56KNA502PUUjq1cNtt\ntwXg2muvBfLpMqlRo0YBeZzSAvDXX389kKf6x1SntDC1BXE7Jqb3Ahx00EHT3C7Okfvuu2/Fv+0V\nx19M199+++079D6avnS6SvPFTIpcfPHFQOvTZD755BMg/1u58MILs7bWlvStNTNDJEmSJElSqTRE\nZkgsfQaw0korAflSn7GcmTrXr371q+xxLGMWbrjhBqByuSw1nt122y17HAUab7/99i7aG3Wmww8/\nHKgsJtfcK6+8AsCIESOAyoJYars4L0ZxP4DNNtsMaNtyu++++y5QmQUy33zztbptOpqirtHakpIx\nknb22WfXe3dUA8OHDwdg1113zZ6LkcwoGKj6i6KoccztuOOOQOXIdWTzpBkh4bjjjgNg2WWXBfLF\nAdIMoLj+qX3SjIGrrroKgMsvvxyAGWfMf3ouvvjiQMssuvaKbNf4WzjiiCOytuOPP76q91Z1Djnk\nEKA4WyeKFrflnqgzmBkiSZIkSZJKpVtnhsTo2f/7f/8ve+7jjz8G4Nhjj+2SfSqrojl/+++/P2Cd\nkEbXq1evFs998MEHXbAn6gy33XZb9niZZZaZ7vbPPPMMAA8//HCn7VMZPPfcc0A+vx2gf//+APTp\n02e6r4/58KmLLroIgJ122qni+ahTovpbbLHFgHx0OhXLPY4bN66u+6Ta2GSTTVo8F8uyPvHEE/Xe\nHTUTGSLxb1vF+TIyFyIzJJY+h3wp344ug15WaZ2HOO8tvfTSLbbbYIMNgLwG4dFHHw20zEBvq8jA\nHDBgQIder9rYc889s8eRpZNmBIVYLjnq93QVM0MkSZIkSVKpdMvMkKjG/qc//QmAGWaYIWuL0c3H\nHnus/jumVkXPeVtXm/joo48qto8e4dYqgc8111xAcWZK9EBHtXCAzz//vE37otyQIUNaPHfzzTd3\nwZ4oFSMdrc2pbT5iec4552SPF1lkkYq29PVtWXWkM1ax0X/FylvpClzt8dJLL7X6fKw8AzBx4sQO\nvbc6Zs011wRaP06jrpYaU5xnP/vss+y5P/zhD121O6qxq6++GsgzQ7bbbrusLTKfzUbvHPfee2/F\nf0fWZJoZ8s033wBwwQUXAHDuuedmbQceeCDQekae6i9WiknPj9///vcrtklnEUStkH//+9912Ltp\nMzNEkiRJkiSVip0hkiRJkiSpVLrNNJl0Kkwsm9u7d28AJk+enLWlxVTVPUyYMKFd219zzTUATJ06\nFYAFF1wQqExN7Ig333wze3zCCSdU9V5lMmjQIAAWWmihLt4TtWb06NEAnHzyyS3aoohfa9NeiqbC\nTKvtrLPO6sguqs5i6lS6XC84NaYrxfTeVCyLfPrpp9d7d1QDkcId9yhvv/121mbh1P8dcT2Ma+zQ\noUOztlga/corrwTghRdeqPPelctdd90FVN7DR+HNvfbaC6gsPL7uuuu2+j5RtFr1FdOrZ5999hZt\nMc0wpqMBPPLII/XZsekwM0SSJEmSJJVKt8kMWXLJJbPHzZdESotnplkiqp90Wc6017wjhg8fPt1t\nomBSayPYN910E9BymcKxY8dWtV9ltdVWWwGV2Vnjx48H4KGHHuqSfVIulhw7+OCDs+fmn3/+qt7z\nnXfeAeDZZ58F4Kc//SmQZ2upe2tqaqr4V11v4403bvHca6+9BuRFw9VYIjMkjrNbb721xTYxAjr3\n3HMDeczVeKKg9ZFHHpk9d8oppwBw4oknArDLLrtkbS5lXntxTxJFbaFyWXqoXPo4xEIKcYz++te/\n7qxdVCviPHjIIYdMc5vLLrsMgAceeKAeu9QuZoZIkiRJkqRS6fLMkF69egH5PLFUjITGvHh1nWHD\nhmWPo+cvlsRtzfLLLw8U1wE5//zzAXjllVdatF133XUAPPfcc+3eV7XNbLPNBsCmm27aou3aa68F\n8t52dZ1XX30VgO233z57bssttwTggAMO6NB7xnzcM888s8q9U1eYZZZZKv7bEcquE9fBNLs1fPnl\nl0Dbl51X95ZeD3faaScAfvnLXwLw9NNPAzBixIj675hq6uKLL84e77333kB+D5wusdveenmavriW\nxZK5kC/NusoqqwCwwAILZG3x++GSSy4B4Oijj67DXipEbJ555hmg9d+FcZykMe1uzAyRJEmSJEml\nYmeIJEmSJEkqlR5FBdh69OjR6dXZIl37sMMOa9G26qqrAi0LZdZLU1NTj+lv1b3VI4bdWaPHsDPj\nF+lsDz74IFC5bOCOO+4IwOeff95ZH98mjR4/6NwYDh48GMgLoMayZpAXGj7nnHNiP7K2SGmsR7G/\nRo9hdzyHxjLiseTgcccdB3TOEq6NHj/o3BhG4em//OUvAOy2225ZW6Tbd/XUiUaPYVcdg1FQ84c/\n/GHsR9YW987nnXcekB+Dr7/+es33o9HjB93zPNoWPXv2BPLpGFdccUXWFlOl2sIYVi+K166++urZ\nc8cccwxQef/aWRo9hp0Rv1gm98YbbwRaL+q+wQYbAHD//ffX+uPbpSh+ZoZIkiRJkqRS6bLMkEGD\nBgH5kq1RhCVlZkj1uront6s1egyNX2PHD4xho8ewO8bv5ptvBuCPf/wj0LkjLo0eP6hPDBdZZBEA\njj/++Oy5xx9/HOj6QsWNHsOuOgbjPjWKZqZLzY8ePRqADz74AICvvvqq0/aj0eMH3fM82h6xyMMa\na6yRPbfaaqsBeaZlEWPY+Bo9hp0RvyeffBLIs+dCLEkNcOihh9b6YzvEzBBJkiRJkqT/02VL6669\n9tpA6xkhkydPBuDTTz+t6z5JktTdpbVh1D1MmTIFgD322KOL90S18vDDDwOw/vrrd/GeqKtts802\nQD4SDtCnTx+gbZkh0v+ieeaZB8jrKUXtltNOO63L9qkjzAyRJEmSJEml0mWZIc2lva1Refb999/v\nqt2RJEmSVHIff/wxAL179+7iPZG6j6hbFv/GqlpTp07tsn3qCDNDJEmSJElSqdgZIkmSJEmSSqXL\nltZtBI2+jBIYw0aPofFr7PiBMWz0GBq/xo4fGMNGj6Hxa+z4gTE0ho2v0WNo/FxaV5IkSZIkCZhO\nZogkSZIkSdL/GjNDJEmSJElSqdgZIkmSJEmSSsXOEEmSJEmSVCp2hkiSJEmSpFKxM0SSJEmSJJWK\nnSGSJEmSJKlU7AyRJEmSJEmlYmeIJEmSJEkqFTtDJEmSJElSqdgZIkmSJEmSSsXOEEmSJEmSVCp2\nhkiSJEmSpFKZsTPf/LTTTmuq5vWTJk0qbJ9jjjkK20888cQe1Xy+YL311iuM4X/+85/C16+44oqF\n7R988EFh+6WXXmoMq3DVVVcVxu+CCy4ofP2gQYMK2wcOHFjYvvHGGxu/Ku2xxx6FMZxhhhkKX//p\np58Wtr/33nuF7XfddZcxrMLaa69d1Tl0/vnnL2yf3utvuukm41elSy+9tDCGl19+eeHr11xzzcL2\n5ZZbrrB92LBhxrAKI0aMKIxfz549C1//+uuvF7Z/+eWXhe1XXnml8avSJptsUhjDV155pfD1M888\nc2H7yJEjC9t33nlnY1iFbbbZpjB+jz32WOHrhwwZUtXnn3XWWcavSnfeeWdhDMePH1/4+gkTJhS2\nr7LKKoXtBx10UKfF0MwQSZIkSZJUKnaGSJIkSZKkUrEzRJIkSZIklYqdIZIkSZIkqVTsDJEkSZIk\nSaViZ4gkSZIkSSoVO0MkSZIkSVKp9GhqKlw2uCrDhg0rfPM99tij8PXTW1d6qaWWKmx/8cUXXVe6\nSn369CmM4YABAwpff9VVVxW29+7du7D95ZdfNoZV6N27d2H8brjhhsLX9+vXr7B91113LWy/+OKL\njV+VVlpppcIYDhw4sPD155xzTmH72muvXdg+duxYY1iF9ddfvzB+q6yySuHrTz755ML2NdZYo7D9\n0UcfNX5Vmt4xeNpppxW+/kc/+lFh+/Dhwwvbr7nmGmNYhcGDBxfGr2/fvoWvP+WUUwrbV1pppcL2\niRMnGr8qHXrooYUx/PzzzwtfP2rUqML2zTffvLD95ptvNoZVmN696ODBgwtfP3r06ML2hRZaqLD9\nzTffNH5V2nbbbQtjuNFGGxW+fs899yxs78p7UTNDJEmSJElSqdgZIkmSJEmSSsXOEEmSJEmSVCp2\nhkiSJEmSpFKxM0SSJEmSJJWKnSGSJEmSJKlU7AyRJEmSJEmlMmNnvvmYMWMK288555zC9iOOOKKw\nfeDAge3eJ7XP5MmTC9t33nnnwvbevXsXts8yyyzt3ie13SuvvFLYfs899xS2H3PMMYXtq6++ent3\nSe30z3/+s7D9wAMPLGwfMmRIYXufPn3avU9qu/vvv7+w/ZBDDilsX2GFFQrbjzrqqHbvk9pnesfg\nE088Udh+0UUXFbb369ev3fuktrvzzjsL2++4447C9j322KOw/YQTTmj3Pql9Tj755ML2v//974Xt\nQ4cOLWyfa6652r1Parvp3Yuuv/76he3LLrtsYfv0fi+qetdcc01h+5VXXlnYPnLkyML2/fffv937\nVCtmhkiSJEmSpFKxM0SSJEmSJJWKnSGSJEmSJKlU7AyRJEmSJEmlYmeIJEmSJEkqFTtDJEmSJElS\nqdgZIkmSJEmSSqVHU1NTp735pptuWvjmiy66aOHrv/jii8L2KVOmFLbfd999PQo30HTtuOOOhTEc\nP3584euHDBlS2P7UU08Vtt9xxx3GsArHHXdcYfwuvPDCwtfvt99+he1vvfVWYfvvfvc741eljTba\nqDCGSyyxROHrv/rqq8L2qVOnFrbffvvtxrAKAwYMKIzfMsssU/j6jz/+uLD9vffeK2x/9NFHjV+V\nDj744MIYPvzww4Wv32CDDQrb33333cL2s846yxhWYfDgwYXxm2222QpfP8sssxS2f/jhh4Xtt912\nm/Gr0sCBAwtjOPvssxe+ftCgQYXt9957b2H7I488YgyrcNJJJxXGb3r3Ic8880xhe8+ePQvbzz//\nfONXpWHDhhXGcK655ip8fa9evQrb77nnnsL2sWPHdloMzQyRJEmSJEmlYmeIJEmSJEkqFTtDJEmS\nJElSqdgZIkmSJEmSSsXOEEmSJEmSVCp2hkiSJEmSpFKxM0SSJEmSJJXKjJ355sOHDy/+8BmLP/7R\nRx8tbF9iiSXavU9qnwEDBhS2P/XUU4XtkydPLmyfe+65271Paruvv/66sH168W1qKlxWnB122KHd\n+6T2GTx4cGH7jTfeWNg+00wzFbbPMsss7d4ntd2Pf/zjwva33367sP3LL7+s5e6oA5ZccsnC9nfe\neaewfXrH4G677dbeXVI7LLPMMoXt8803X2H7448/Xti++eabt3uf1D7bbrttYftDDz1U2P7ggw8W\nti+66KLt3ie13fTOgdM7h/bs2bOwfXq/RVS9vfbaq7B9woQJhe0PPPBAYfsWW2zR3l2qGTNDJEmS\nJElSqdgZIkmSJEmSSsXOEEmSJEmSVCp2hkiSJEmSpFKxM0SSJEmSJJWKnSGSJEmSJKlU7AyRJEmS\nJEmlMmNnvvnNN99c2D69daP/8Y9/FLavscYa7d4ntc/01oWec845C9tnm222wvZZZpmlvbukdnj7\n7bcL2xdccMHC9rFjxxa2f/ui0coRAAAgAElEQVTtt4Xt/fv3L2zX9J133nmF7VtvvXVh+3PPPVfY\n3qtXr3bvk9pu3Lhxhe2DBg0qbF9ggQUK28ePH9/ufVL7PPHEE4Xt33zzTWH7o48+Wtg+44zFt2Kr\nr756YbuKzTDDDIXt04vPgAEDCtvvvPPOwvZ99tmnsF3T98EHHxS2r7XWWoXt//rXvwrbe/To0e59\nUttN7zo4vWN03nnnLWz3XrPznXPOOYXtCy+8cGH7/PPPX9jer1+/du9TrZgZIkmSJEmSSsXOEEmS\nJEmSVCp2hkiSJEmSpFKxM0SSJEmSJJWKnSGSJEmSJKlU7AyRJEmSJEmlYmeIJEmSJEkqleLF7as0\nZsyYql6/5557FrZ35ZrEZXHLLbdU9fqXXnqpsH3DDTes6v1V7Oyzz67q9auvvnph+8cff1zV+2v6\nnnnmmarap3eebGpqavc+qe3uvffeqtp32WWXwvbNNtus3fuk9jn33HOrev2aa65Z2P71119X9f4q\nduqpp1b1+uld50aOHFnV+2v6TjrppKpe379//8L2IUOGVPX+KnbllVdW9fpBgwYVti+++OJVvb+m\n74Ybbqjq9UOHDi1sHz9+fGH7RhttVNXnFzEzRJIkSZIklYqdIZIkSZIkqVTsDJEkSZIkSaViZ4gk\nSZIkSSoVO0MkSZIkSVKp2BkiSZIkSZJKxc4QSZIkSZJUKjN25Yfvtddehe2zzjprYfu4ceMK23/y\nk5+0e5/UPiNGjChsnzx5cmH7d75jf1xX2mabbQrbF1poocL2MWPGFLYff/zx7d4ntc/mm29e2D69\nY6xv37613B21009/+tPC9nvvvbewffHFF6/l7qgD1ltvvcL2pZZaqrD9nnvuKWw/6qij2r1Parvp\nHYOXXXZZYfvtt99e2L7lllu2e5/UPtO7Ds4888yF7ffdd19h+3HHHdfufVLb7bDDDoXtTz/9dGH7\ngw8+WMvdUQdst912he2zzz57YftHH31Uy91pF3+JSpIkSZKkUrEzRJIkSZIklYqdIZIkSZIkqVTs\nDJEkSZIkSaViZ4gkSZIkSSoVO0MkSZIkSVKp2BkiSZIkSZJKpUdTU1NX74MkSZIkSVLdmBkiSZIk\nSZJKxc4QSZIkSZJUKnaGSJIkSZKkUrEzRJIkSZIklYqdIZIkSZIkqVTsDJEkSZIkSaViZ4gkSZIk\nSSoVO0MkSZIkSVKp2BkiSZIkSZJKxc4QSZIkSZJUKnaGSJIkSZKkUrEzRJIkSZIklcqMRY09evRo\nqteOdEdNTU09unofqmUMGzuGxq+x4wfGsNFjaPwaO35gDBs9hsavseMHxtAYNr5Gj6Hxm3b8zAyR\nJEmSJEmlYmeIJEmSJEkqFTtDJEmSJElSqdgZIkmSJEmSSsXOEEmSJEmSVCp2hkiSJEmSpFIpXFpX\n6tHjvysRfec7eb/ZYostBsApp5wCwMILLwzADDPMkG0zfvx4APr27QvAlClTsrZjjjkGgEmTJnXW\nbkulFMcr5MdsHJdff/111tbUVOoV1iRJkiQzQyRJkiRJUrn0KBoh7NGjR6mHD5uamnpMf6vurdoY\nfve73wWgX79+2XO///3vK56bbbbZKrZtzbfffps9fuqppwBYZ511APj000+r2cVCjR7D7nIMplk/\na6+9NgDDhw8H4IEHHgDg+uuvz7ZJ412NRo8f1CeGcextttlm2XP77bcfADPNNBMA48aNy9qOP/54\nAD744IPO3rWGj2E94hdZPGlmz3/+8x+g41k88V7xb/o+7XnPRo8fdJ/zaCpiHsdnxPurr76q+Wc1\negw7I37Nj7k4JiIO3Umjxw+65zFYT8awc8U9avweSX+zLLXUUgC8/PLLALz99ttZ21tvvQXk90JF\nx3+jx7A7x68eiuJnZogkSZIkSSoVa4aoVTFaMscccwCwww47ZG0rrrgiALPOOiuQ96R+/PHH2Taf\nffYZAN///veBfPQL8l7aww8/HIDDDjus9v8Dqqk062fEiBFAntlz2223AbXLBlH7RXy23nrr7LlV\nV10VgJlnnhmARRddNGuLUZDTTz8dgE8++aQu+6n/ilHpueaaC4B55pkHqMzAev311wH48ssvgeIR\nq3i/9DiNx5FpkNaMUddIa29tscUWABx66KEAXHfddQCceuqp2TaeU2sjvveFFlooe27llVcG8pHk\nl156CYBXX3012+a9994DOp4tEp/7ve99D8iPd4A333wT8LjsDGmGXbBOVuOK4yiukwMHDszadtxx\nRwBWWWUVAGaZZRYAFlhggWyb+HuI3ygffvhh1nbLLbcAcMUVVwDw5JNPAvDNN9/U+P9C3ZmZIZIk\nSZIkqVTsDJEkSZIkSaXSKdNkmi/HmqaGRqqaKUjdW0yPGTJkCACDBw/O2iKl/pprrgFg1KhRALz2\n2mvZNhHnJZdcEoCzzz47a1thhRUq2tT9pSmmM87439PGiy++CMDjjz/eJfuk/Fy73nrrAbDppptm\nbZGaHSne8803X9a23XbbAfD0008D+VSnf//73528x4I8NX/ppZcG8uXJo8AbtJzmkh6DzYs+xjTE\nNMaLLLIIkB+naWqwukbEHeB3v/sdAL179wZg7rnnBiqnyag6Me1s2WWXBeCkk07K2uK5+++/H4CL\nLroIqJy2Ete6mK7U2nSZ5tMv0inBMRUnio7H+wGcc845QD4VR9WLY2j77bfPnot4XHvttQBMmTIl\na3PqTPeVThldfPHFgfzcuNFGG2VtMV2/udaO1bg+zjnnnNlzW221FZBP7Y/pa//61786vO9qu9YK\nvHcFM0MkSZIkSVKpVJ0ZElkfUSgT8pGOKGgTo1+Qj04988wzAEydOhWA999/P9smeugiAyFdai56\nj5pnnaS9gPFc9PCbhdI2adGpKEIUI1kxggx57E455RQgj1drYlQyLdAY2//973+vxW6rDuaff/7s\ncRxP//jHP4B8aTLVXxQJ+/Of/wxUFugLcVynIy2x3ciRI4F8eeu7776783a25NLza2Rt7LbbbkB+\nHfzb3/6WbRPnzKLR6HjPGP1caaWVsm2WX355oPWiceoaG264Yfa4V69eQJ4t8MQTTwAWTa2lOC42\n2WQToPJeNO4r77zzTgCeeuopID8XQvuWt47za9z/Ahx77LFAXvjxpptuytoizt1lZLQRxb1+/Na4\n/PLLAVhsscWybSLOkZ2z++67Z20WDu8+4viJjMg0hkcddRSQnz/j9wnkx00cT3G9e+WVV7Jt4u8k\nMt7TuEcB1ZtvvhmAL774ohb/O0rMPvvsAAwdOhSAgw8+OGuLrJ8418Z18Jhjjsm2iVhG4f8oKp++\nrlpmhkiSJEmSpFLpcGZI9GbHfK3ocQNYYoklgLwXqG/fvllb9P5F73tklKSvj56+6PFJ51TG4xhJ\ni57/zz//PNsmliS88sorAZg4cWLWZpbItKUjE++88w4Ad911F5AvNwV5Zkj6nTcXfx8xNy/+JiCP\n62WXXVaL3VYnijhuvvnm2XMxChPxc0Sr/mJkJI7PGEVJ6zPFcRa96Olc+Oip79OnDwCnnXYaUFkb\nKM6jqo10NGvPPfcEYM011wTyudDpta4tIx5x7MV1Nc08iHPufffdV81uqwYiPj/5yU+y5+LeJWIY\nWQSqnci6ifNdmmX88MMPA/DII48A+T1pRzNz4tybZmcttdRSQJ6VNX78+KwtRqe9frZPeo3beOON\ngXxZ1LQWRPPtI7t1wQUXzNoiS7lWo8tqmzRLNbLP49/4TRj3mZAfK5EhkP5enDx5MgCXXHIJAGPH\njgUqa8PEcZ/W7AlploE6Lu5vlltuOQB23XXXrC0y83r27AlU1lUKUa8uajnFkvOQZ4S88cYbQOVv\nx2effRao/jxqZogkSZIkSSoVO0MkSZIkSVKpdHiaTPMlct99992sLVIBIy3thRdeyNpi+yj8F1No\nougN5MsfNV82MH3dzDPPXPHf6fJKUQAnUqvS4p9qm0gbfOmllwB49dVXW7SFmEqRpoFH8b5IXYuC\ngQCPPfYYkC9hpe4r0hEPPPDA7Ll5550XgOeff75L9qms0gKcxx13HJAvU52mDofm5+i00HEsuxup\nqVHEKgrQQb48oUvMVSdis84662TPxXJ+ca2KwqlpGn97ROr3qquu2uJzP/roI8B0/K4UxVKjiCPk\nx3NMz5g0aVL9d6wk4l40XTr8oYceAvLjo6PTYyKOCy20EADrr79+1hbvHWndt99+e9Zmodz2ie85\nUu0BzjzzTKDl9Jj0HjWOr9deew2AYcOGZW1//etfgXwauNNmOlfcZ/Tv3z97Lu4nJ0yYAOTTW+64\n445sm3vvvbdi27fffjtriylobYmZZRJqI73fjGkxUeQ27knTRVXi+IzvP52aFMdnTHeKc2a6aMOK\nK64I5MV108+PKcaxCEtHY2xmiCRJkiRJKpWql9ZNe9pD9MCef/75QGUvTjyOzI6Q9iLNPffcQN7D\nk45oxeMll1wSgBEjRgCw+uqrt/iM9vQYqnXNR5ch/36jl+4HP/gBUJk9EIWtIssnCt8ADBkypOK9\n1X1FT36a2RPHVdo7r84Xo8sAP//5z4GWGSHpMRXZejF6lhYt++EPfwjkvfrRCx8ZXQB/+MMfANhj\njz2A4oLJmrZYxjgtCBaZHFH4L0ZFOnpOXGONNYDKv5GXX34ZyIuNq/5iNDuuh+l9Togl5h21rI00\ngy4yh2Np23RJzbgHje3T17VHvPfPfvYzAJZZZpms7frrrwfgvPPOA4xxNeL6tfPOO2fPxXWr+Yhz\nWvw7vvsYgd5nn32ytl122QWAW2+9FcgzLtMsSnVMejytttpqAPzud78DKovYXnPNNQDccMMNQHEm\nYyzsoK4RMzCOPPLI7Lm4P4y2OM4i0wfg7rvvBvIM2DSOkR0bMwsGDBgAwMiRI7Nt4jiP+9211lor\na4usu/hd0lFmhkiSJEmSpFKpOjOkNZGJUZSR0Xw5o7RmSIxkRc9g2kMYPUOxBGEsTZjOxY1e3XHj\nxnXsf0CFIh4xIrLeeusBlctyRk9eLIn0y1/+MmuLnkN1X9Grv8EGGwCVS5LF/M3WssLUeUaPHp09\nbp5ZF9LaTZGBFUthp1kkceyuu+66QL7k58orr5xtE8uhHXzwwQAcc8wxVe1/2cQxFHU80qybGP0a\nNWoU0PFjKUZLd999dyCfUw35fHhHObtO1ObZe++9gcrsrBjNjjbVRnqtigziyBCJ/wb48Y9/DORL\n7EZtpHREO0Yro5ZPWucjlq7+7W9/C+Rz5V988cVsm4svvhjIj3d1XFzzFl100ey5+N0QS66eeOKJ\nADz66KPZNlH3LLLI09c3Xw60ozWb1FJa8+HCCy8EYOGFFwYqs4ovvfRSoPqRfXWeqC13wAEHAJW/\n5+J8G8dOxDMyiyH/HdhanaR4fdyTRu2lpZdeOtsmsk6+/vprIL+uQt6XUG0NJjNDJEmSJElSqXRK\nZkhHtFYXpGi76NGNWiFRvwJg4sSJQL6KjTVDOkfUkYg5Y2lPcIx63XnnnUA+Z0yNIXpr08rr4Ywz\nzqj37pRajGwNGjSoRVucD2OOdJrZEdlzrYlsgZjTvuyyywKw0korZdvEOXaHHXYA4I9//GPWls69\nV+tiNCVWjkmvazE/+tlnn63qMxZbbDEgj1ua/RPnXq9/9ZVmFvTp0wfIswhSEftYsU21ka4+GFmr\nsQJJ1DADGDhwIACHHHIIkI9epquVxKhjrDyTOuyww4A8tpHddfLJJ2fbxHnZY7DjmtdyiUxHyK9R\nV199NQAPPPAAUHmujW0iMy99v6hXEJkkrvBTOzvttFP2OM3IgjxOUJlJpe4jPU7inBhZjOk5NsQ9\n4dixYyv+G/LjMX6np5nNsdJM1PKJf1urrxW/K9O/n7feegswM0SSJEmSJKld7AyRJEmSJEml0m2m\nybRV86J0kX6VFg6Mwi1RkMclXGsrvs9YxjGKT0U6IsCbb74JwF/+8hegZcFcdW+RThxLsMZy2QDP\nP/98l+xTWUUh03QqYByDUfQvpgsWTY1JxetjusyYMWMA2HfffbNtYqpUFJyLlHOAm266qZ3/F+UT\naZ5RWDFdTu60004DOp7aGdfBWH4uPistQhdTcbz+dZ0oKh5TpqIAHORLXhufzhOFGqNwbVogM6aU\nRZHwKLKaTjV74403gPx4iymLAL1796547/fffx/IlwoFp13UQhwfMdXoqaeeytqiGH9cB+M8mMYp\nUvujMGOk1aeiAKtqZ/PNN88exzESsXz88cezNqeQdU/pdSkKQKf3oM23i7ZtttkGqCxkHcdenGM/\n//zzrC0K/a+yyipAXiw1FX8j8TvkkksuydpqVSDezBBJkiRJklQqDZcZEkU6DzroICDvRbrllluy\nbf72t78Bjrh0lhg5icKpkRGS9vDG8qtPPPFEp+9P9DqnRXnSnke1TVowKUY04zsdP3581hZFx9S5\noqd95513BirPZ1Gc6sgjjwQqsw7aI94zRkzTwljx9xB/Ax5T7RPXpjhfpsvHpxkCbZUen5GtEwWO\n49wby+lCPlKt+kpHxCJjK2KXLqF8//3313fHSiL9ju+66y4gv29cZpllsrYYZYziw3HuS7Orzj33\nXCAvoPqrX/0qa4vjOrI/LrvsMsDjrrPEOS69RvXr1w+ADTfcEMhHntPMkLg/nDRpElBZRDdiGH8D\nd9xxB5AX01XHNS98mz631lprZc/FMdbRLKqIYcS5I9dWFYtsqiOOOAKoXDY3rncRhygYHxkfkMck\nYpwujRuP02Xn09dAXjT5Zz/7GQATJkzI2mqVWWRmiCRJkiRJKpWGyAxJR/xHjRoFwNJLLw3Aq6++\nCsBxxx2XbRPL76hz9O3bF8iXpovR5YgFwMEHHwzUp5c2epsdua5OWvNl2223BfJe12uvvTZrcx50\nfcw111wALLXUUkBlD3jMkY5lzDoak+jVj/m96ah2iJFW51W3T3xvkSGSHl+77747AH/605+AfE5u\na9mMUW8iXbr80EMPBWD22WcH8nNfjLKBc7G7SsQE8qWuY9QsHXGOY1i1lZ4Lo75V3B+mx0Qcj3F/\nGTFKM0PiGI62NNM1rpGx/emnn97iM1Q7rV3jttxySyCvSRDZlOlvgFi6OjLz0gy9WBa5f//+AKy7\n7rpAviw5eF/ZUXPPPXeL5+JefdNNN82eiyyDqDO45pprAjB16tQW28RvjDQ7aMSIEUB+n/Tb3/62\nxetVnTinXXjhhUBeYw7yLPKtt94ayGtIpr/9Ips8anymy+ZGRkh8RpxPo64a5PGP9+mMWR9mhkiS\nJEmSpFKxM0SSJEmSJJVKt54mEylVO+ywQ/bcj3/8YyBPwTn88MOBjhcQVNukKd633XYbAPPMMw+Q\nf/dpwZx0qePOEqmrkTKVLolnqmrbxXEWSwVCvsxVpIhGUWKwMHG9RGGpmC6Tpv7G+a89y4enBc1i\nOkwUjtt+++2BymMo3jOmx0Qaq9omYvPkk08C+bUL4Be/+AWQF5K79dZbgcrU3kgpXW211YDKZUGX\nX355IE8xjdTvdCqTx2l9xfG19tprZ89F+n7E4p577snaTL/vHOnffZwzW5s6nRZabasFF1wwe9x8\nKd3WlmxV7cQ0mfQcF9ML07hAZbxffvnlin9jOV6AL7/8EsinycSiAPE85FNmvKdsn8svvzx7HNOR\nYspnOk1i3333BfJ7ktYKr8b9SSzJmxbBjfvWuHeJKTRpseO2nGvjc71uTlt8N+lUwiuvvBLIp9LH\ntMN0KlPcy1x99dVAZfziPeN8GtNtYgp4uk1nMjNEkiRJkiSVSrfODIlshCjGCXnPYiyZFku4qnOl\nvbyLL744kPfWRYGq6HlP26K3NV02Kdo6WvQxehyjWFZrnxEjBpq++P5+9KMfZc/Fd/ziiy8C8Pbb\nb9d/x0ouznUxYpJmZ0Xve4yAFY1qxIhJvB/kBVOPPfZYABZbbLEWr4/j88QTTwTgs88+q+r/p2xi\ndPG8884DKkcvBwwYAOSjWrEcXVrcL4qFxXntvffey9piZC2O0+bLIKfPOdJVH3E92n///bPn4tiL\nv4Xjjz8+azMujSOW5I0CmwBvvPEGYOHUeonjZfLkydlzUYgzMhxjqd3IWoY8Ts8++yxQmVkSGa+R\nwRUj2MOHD8+2eeyxxwCX222vOC4gv/cYOnQoUJkZMO+88wKtF28Pce8TizakGazNr4EbbLABkGc3\nAzzyyCNA67854nXNM1I8P7dP8yy8NBsnZgpEEfj0u44s57jPjGXM683MEEmSJEmSVCrdOjNk4403\nBqBPnz7ZczFveu+99wbsje9sc8wxBwDrr79+9lzzEccHHngAaH1ebmwb9Q8gH/GM2BX1wMbrY9QN\nYIEFFgDy0exPPvkEqJzH5ih228V3HEuaQd5LP2nSJKA+SySrUvxdx3efjobE8RAZArFtej6M7WPJ\nuaOPPjpr22STTYB82dfYNh05efDBBwG48cYbAUdK2iu+rxiViqU4AVZccUUgz/qI7z2NcWSCxIhk\nnIsB1ltvvYrt4/yazsU2M6S+Iisn5sdDy2XnX3vttfrvmDosYhpLVse5FOCqq64CjGm9pdeoWJ46\n/r399tuBPNsA8mtc1CSI+0/I43vdddcBcMIJJwB5nab0cWShey/UNmlNnvheR40aBVQuPx7XsmHD\nhgH5MZb+Zog4tVYfMO6F4t4naqyl2T0TJ04EimuseZ2srTTTJ+4905iGCRMmAJWZRF3BzBBJkiRJ\nklQq3TIzJOYVjR49GqisSnvTTTcBMGXKlPrvWAnFXL80Bs1HHHv16tVim+i9j1imPe1RWySqr0eP\nfTqqGXPp55577or3g3z+YIzARQ/kww8/nG2TZomoWHzvkYkFeSxj9QMzsOovjo+o15LOs43HI0eO\nBPJK3mkV/G222QaAESNGAPmxCC1XYor5nTE/GvJMBle9qE6cu9J6IHGuijg0/zd9XRx76eub10SK\njMmYH5++TvUR16r0OItrZZxHW8ueVPc1ePBgAJZddlmgcrQzMmI7WvtMtRexSFczjHNqa8dePBc1\nCLfbbjsgr4sHeT2nWMnElSvbL7JpItsxrX91wQUXAHDRRRcB+f19ZP9Dvvpa/B5JsziarwoVWeFp\nDcHmmSVtyUZXx8TxdsYZZ2TP7bzzzkD+3abZVZttthnQ9fcrZoZIkiRJkqRSsTNEkiRJkiSVSreZ\nJpNOsbjsssuAfLmrSAEGOPDAA+u7YyUXKWetpY5FyujWW29dsS3k6YfrrLMOkBc1gjzF+8knnwTy\ntKq08FykysVnRJEdyIsh9e/fH8iXTEvTVS2g2nZRuCotOhbf5bhx47pkn5Sf904++WQgL+IH+dSm\n/fbbD4B99tkHqEw1jMJicXylx3CkiUa6YhSei/cBp5rVQ8SrLSmiaWppTF2K13366aeAyz92pVgu\nOS32HefRKEKs7i9Nr99+++2BPM0+naoWRatNq+9+0vNpW86tMW3j7rvvBvK4Q36tnXPOOSu2Td/b\nYtXVi+8ypvrGNQ3yRRPiXib9TRi/NeJ3RUwV/cc//pFt057rojGsTkxv2nXXXbPn4pwa3+1ZZ52V\ntcV08K5mZogkSZIkSSqVLs8MiZ6+oUOHZs8NGjSoYptYwgzyJbRUH9E7G4VrIV+yKnrDY+myvfba\nq8XrY5u0d36eeeYBYJFFFgEqR2JC9CBGvOMzAAYOHAjk2R9RgCktHqjpi9jsu+++QGXxxvjeo9it\nus7VV18NVC5vvdtuuwGVBf2mp7WiY1EEMDJC0lEvdS9pxkEsDxmjaLF0azpyrfqKYpupyK568cUX\n67076qB0+ccVVlgByO9R0uysyPqJc3Dc4ziy3HgidnGtTYsgR4b6D37wA6DyPjP+HtpSmFNtE/el\n6f1OZGZFW/qbYerUqUB+rxrFyWMpZLBwdT3E77pjjz0WyGMG+fH1wgsvAN1zhoeZIZIkSZIkqVS6\nPDMk5oIdeuih2XMxQv3aa68B+bx41V/0dO+www7ZcxdffDEAxx13HJD3nKcjl7EEVoyapMtzvvTS\nSxWfEaPR6esj2+ORRx4BKkdkYp9idDQ+3yXu2ie+7549ewKV39+YMWOAfF60uk787cfycgCrrroq\nAMsttxxQmdUT4jhpbbnBWJI34uzyud1fmgUU574Y8Zo8eTLgyGRXiFHKDTbYoOK/IR9FdjnOxpEe\nZ1G7LGI6xxxzZG1x3YxlzmPuu6PQjSvuRaMOHeS11KJG3euvv561xfEdmZZdvTzo/4LmdbAgv65F\nZkh6v3LHHXcAeczinibNco17IK+PtRcxiaV0Y4n59LueNGkSACuttBLQPY8TM0MkSZIkSVKp2Bki\nSZIkSZJKpcumyUTa4W9+8xsAlllmmawt0sIPOuggwFT97iBNa7r11lsr/m1NpE61lr5f60Jjafq/\n2i7SeW+++Wag8hi85JJLgO6ZzlZW6XLRK6+8MpBPIdxqq60AeP/997NtIjUxlrCOOENeaNO00caR\nFiSLgtIR7/HjxwMer10h7mXimpdOk4hrk1MnGkeanh/FGBdffHGgcgpU3759AXjooYcAmGmmmVq8\nV3uWzlbr4h6yHt9hHKcRd8inQcU1c/bZZ8/aotCqCzvUTtyTnHDCCdlzce2LWNx1111Z2+WXXw7k\n18LWfl94n9N5ouD0ZpttBuTXwfQ8uummmwJ5wffuyMwQSZIkSZJUKj2Kesx69OjRad1pq622GpD3\n8EXBTYAnnngCyJeq++CDDzprNwo1NTX16JIPrqHOjGEjaPQY1jN+6ahXdylG2+jxA4/BRo9hd4lf\nmhmyySabANCnTx8ArrjiCgCmTJmSbVOr0bBGjx/UJ4ZRZHzbbbfNnjvqqKMAeOqpp4CuG6Fs9Bh2\n1TG46KKLAjB69Gig8hj87W9/C+SZd5HBnF47a5XN0Ojxg7bFMEaV02L6zZevLXpdrY6vNKM5CqfO\nOeecAEyYMCFri5HuKMTNZBEAAAG9SURBVGgd8U5fn2QqlCKGnSm+167K+mj0GNYqfnG8AZx88slA\nXuA/YnT66adn2xx88MFA12foFMXPzBBJkiRJklQqda8ZEsuWDRs2DMjnPqe96bFEWXcZnZbKwONN\n6r5i+UaAG2+8EcizuWLEpatHXsossnOuuuqq7DlrRTS2qAUR96vpsrtxPHrM1U58l1999VWbtq91\nRkhrohbFIossUvGZUFnHK+Vx3zn8XruHNEMu6mJ9+OGHQF5v5/DDD8+2aYRzpJkhkiRJkiSpVOqS\nGZLWIph33nkBWGCBBYB8flHMCwQYM2YMMO1eV0mSyipGWlylpPtx9PJ/TxxnHm/dS2eNOLeW/TFu\n3DjA1QuleeaZJ3sc9XJi9Z9YZTTNZG0EZoZIkiRJkqRSsTNEkiRJkiSVSpctrRtLZ7VWtLG7pJk2\n+jJK0PVLYXW1Ro+h8Wvs+IExbPQYGr/Gjh8Yw0aPofFr7PiBMTSGja/RY2j8XFpXkiRJkiQJmE5m\niCRJkiRJ0v8aM0MkSZIkSVKp2BkiSZIkSZJKxc4QSZIkSZJUKnaGSJIkSZKkUrEzRJIkSZIklYqd\nIZIkSZIkqVT+P71PuQMOABHIAAAAAElFTkSuQmCC\n",
+            "text/plain": [
+              "<Figure size 2880x288 with 30 Axes>"
+            ]
+          },
+          "metadata": {
+            "tags": []
+          }
+        }
+      ]
+    },
+    {
+      "metadata": {
+        "id": "59PJ-PbxbYE7",
+        "colab_type": "code",
+        "colab": {}
+      },
+      "cell_type": "code",
+      "source": [
+        ""
+      ],
+      "execution_count": 0,
+      "outputs": []
+    }
+  ]
+}
\ No newline at end of file