Skip to content
GitLab
Explore
Sign in
Register
Primary navigation
Search or go to…
Project
C
cse16259_openlab
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Container registry
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
aslesha
cse16259_openlab
Commits
143f7c35
Commit
143f7c35
authored
6 years ago
by
aslesha
Browse files
Options
Downloads
Patches
Plain Diff
Upload New File
parent
a3568008
Branches
Branches containing commit
No related tags found
No related merge requests found
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
lab4/matplot_16259.py
+122
-0
122 additions, 0 deletions
lab4/matplot_16259.py
with
122 additions
and
0 deletions
lab4/matplot_16259.py
0 → 100644
+
122
−
0
View file @
143f7c35
import
csv
import
numpy
as
np
import
matplotlib.pyplot
as
plt
def
loadCSV
(
filename
):
'''
function to load dataset
'''
with
open
(
filename
,
"
r
"
)
as
csvfile
:
lines
=
csv
.
reader
(
csvfile
)
dataset
=
list
(
lines
)
for
i
in
range
(
len
(
dataset
)):
dataset
[
i
]
=
[
float
(
x
)
for
x
in
dataset
[
i
]]
return
np
.
array
(
dataset
)
def
normalize
(
X
):
'''
function to normalize feature matrix, X
'''
mins
=
np
.
min
(
X
,
axis
=
0
)
maxs
=
np
.
max
(
X
,
axis
=
0
)
rng
=
maxs
-
mins
norm_X
=
1
-
((
maxs
-
X
)
/
rng
)
return
norm_X
def
logistic_func
(
beta
,
X
):
'''
logistic(sigmoid) function
'''
return
1.0
/
(
1
+
np
.
exp
(
-
np
.
dot
(
X
,
beta
.
T
)))
def
log_gradient
(
beta
,
X
,
y
):
'''
logistic gradient function
'''
first_calc
=
logistic_func
(
beta
,
X
)
-
y
.
reshape
(
X
.
shape
[
0
],
-
1
)
final_calc
=
np
.
dot
(
first_calc
.
T
,
X
)
return
final_calc
def
cost_func
(
beta
,
X
,
y
):
'''
cost function, J
'''
log_func_v
=
logistic_func
(
beta
,
X
)
y
=
np
.
squeeze
(
y
)
step1
=
y
*
np
.
log
(
log_func_v
)
step2
=
(
1
-
y
)
*
np
.
log
(
1
-
log_func_v
)
final
=
-
step1
-
step2
return
np
.
mean
(
final
)
def
grad_desc
(
X
,
y
,
beta
,
lr
=
.
01
,
converge_change
=
.
001
):
'''
gradient descent function
'''
cost
=
cost_func
(
beta
,
X
,
y
)
change_cost
=
1
num_iter
=
1
while
(
change_cost
>
converge_change
):
old_cost
=
cost
beta
=
beta
-
(
lr
*
log_gradient
(
beta
,
X
,
y
))
cost
=
cost_func
(
beta
,
X
,
y
)
change_cost
=
old_cost
-
cost
num_iter
+=
1
return
beta
,
num_iter
def
pred_values
(
beta
,
X
):
'''
function to predict labels
'''
pred_prob
=
logistic_func
(
beta
,
X
)
pred_value
=
np
.
where
(
pred_prob
>=
.
5
,
1
,
0
)
return
np
.
squeeze
(
pred_value
)
def
plot_reg
(
X
,
y
,
beta
):
'''
function to plot decision boundary
'''
# labelled observations
x_0
=
X
[
np
.
where
(
y
==
0.0
)]
x_1
=
X
[
np
.
where
(
y
==
1.0
)]
# plotting points with diff color for diff label
plt
.
scatter
([
x_0
[:,
1
]],
[
x_0
[:,
2
]],
c
=
'
b
'
,
label
=
'
y = 0
'
)
plt
.
scatter
([
x_1
[:,
1
]],
[
x_1
[:,
2
]],
c
=
'
r
'
,
label
=
'
y = 1
'
)
# plotting decision boundary
x1
=
np
.
arange
(
0
,
1
,
0.1
)
x2
=
-
(
beta
[
0
,
0
]
+
beta
[
0
,
1
]
*
x1
)
/
beta
[
0
,
2
]
plt
.
plot
(
x1
,
x2
,
c
=
'
k
'
,
label
=
'
reg line
'
)
plt
.
xlabel
(
'
x1
'
)
plt
.
ylabel
(
'
x2
'
)
plt
.
legend
()
plt
.
show
()
if
__name__
==
"
__main__
"
:
# load the dataset
dataset
=
loadCSV
(
'
dataset1.csv
'
)
# normalizing feature matrix
X
=
normalize
(
dataset
[:,
:
-
1
])
# stacking columns wth all ones in feature matrix
X
=
np
.
hstack
((
np
.
matrix
(
np
.
ones
(
X
.
shape
[
0
])).
T
,
X
))
# response vector
y
=
dataset
[:,
-
1
]
# initial beta values
beta
=
np
.
matrix
(
np
.
zeros
(
X
.
shape
[
1
]))
# beta values after running gradient descent
beta
,
num_iter
=
grad_desc
(
X
,
y
,
beta
)
# estimated beta values and number of iterations
print
(
"
Estimated regression coefficients:
"
,
beta
)
print
(
"
No. of iterations:
"
,
num_iter
)
# predicted labels
y_pred
=
pred_values
(
beta
,
X
)
# number of correctly predicted labels
print
(
"
Correctly predicted labels:
"
,
np
.
sum
(
y
==
y_pred
))
# plotting regression line
plot_reg
(
X
,
y
,
beta
)
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment