Skip to content
GitLab
Explore
Sign in
Register
Primary navigation
Search or go to…
Project
C
cse16259_openlab
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Container registry
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
aslesha
cse16259_openlab
Commits
d45a91cc
Commit
d45a91cc
authored
6 years ago
by
aslesha
Browse files
Options
Downloads
Patches
Plain Diff
Upload New File
parent
dbfd1b34
Branches
Branches containing commit
No related tags found
No related merge requests found
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
lab8/perq1.ipynb
+179
-0
179 additions, 0 deletions
lab8/perq1.ipynb
with
179 additions
and
0 deletions
lab8/perq1.ipynb
0 → 100644
+
179
−
0
View file @
d45a91cc
{
"cells": [
{
"metadata": {
"trusted": true
},
"cell_type": "code",
"source": "import csv \nimport numpy as np \nimport matplotlib.pyplot as plt \nfrom sklearn import datasets",
"execution_count": 1,
"outputs": []
},
{
"metadata": {
"trusted": true
},
"cell_type": "code",
"source": "import pandas as pd\nAutomobile_data= pd.read_csv('Automobile_data.csv')",
"execution_count": 2,
"outputs": []
},
{
"metadata": {
"trusted": true
},
"cell_type": "code",
"source": "Automobile_data.head(n=5)",
"execution_count": 3,
"outputs": [
{
"output_type": "execute_result",
"execution_count": 3,
"data": {
"text/html": "<div>\n<style scoped>\n .dataframe tbody tr th:only-of-type {\n vertical-align: middle;\n }\n\n .dataframe tbody tr th {\n vertical-align: top;\n }\n\n .dataframe thead th {\n text-align: right;\n }\n</style>\n<table border=\"1\" class=\"dataframe\">\n <thead>\n <tr style=\"text-align: right;\">\n <th></th>\n <th>index</th>\n <th>company</th>\n <th>body-style</th>\n <th>wheel-base</th>\n <th>length</th>\n <th>engine-type</th>\n <th>num-of-cylinders</th>\n <th>horsepower</th>\n <th>average-mileage</th>\n <th>price</th>\n </tr>\n </thead>\n <tbody>\n <tr>\n <th>0</th>\n <td>0</td>\n <td>alfa-romero</td>\n <td>convertible</td>\n <td>88.6</td>\n <td>168.8</td>\n <td>dohc</td>\n <td>four</td>\n <td>111</td>\n <td>21</td>\n <td>13495.0</td>\n </tr>\n <tr>\n <th>1</th>\n <td>1</td>\n <td>alfa-romero</td>\n <td>convertible</td>\n <td>88.6</td>\n <td>168.8</td>\n <td>dohc</td>\n <td>four</td>\n <td>111</td>\n <td>21</td>\n <td>16500.0</td>\n </tr>\n <tr>\n <th>2</th>\n <td>2</td>\n <td>alfa-romero</td>\n <td>hatchback</td>\n <td>94.5</td>\n <td>171.2</td>\n <td>ohcv</td>\n <td>six</td>\n <td>154</td>\n <td>19</td>\n <td>16500.0</td>\n </tr>\n <tr>\n <th>3</th>\n <td>3</td>\n <td>audi</td>\n <td>sedan</td>\n <td>99.8</td>\n <td>176.6</td>\n <td>ohc</td>\n <td>four</td>\n <td>102</td>\n <td>24</td>\n <td>13950.0</td>\n </tr>\n <tr>\n <th>4</th>\n <td>4</td>\n <td>audi</td>\n <td>sedan</td>\n <td>99.4</td>\n <td>176.6</td>\n <td>ohc</td>\n <td>five</td>\n <td>115</td>\n <td>18</td>\n <td>17450.0</td>\n </tr>\n </tbody>\n</table>\n</div>",
"text/plain": " index company body-style wheel-base length engine-type \\\n0 0 alfa-romero convertible 88.6 168.8 dohc \n1 1 alfa-romero convertible 88.6 168.8 dohc \n2 2 alfa-romero hatchback 94.5 171.2 ohcv \n3 3 audi sedan 99.8 176.6 ohc \n4 4 audi sedan 99.4 176.6 ohc \n\n num-of-cylinders horsepower average-mileage price \n0 four 111 21 13495.0 \n1 four 111 21 16500.0 \n2 six 154 19 16500.0 \n3 four 102 24 13950.0 \n4 five 115 18 17450.0 "
},
"metadata": {}
}
]
},
{
"metadata": {
"trusted": true
},
"cell_type": "code",
"source": "Automobile_data.tail(n=5)",
"execution_count": 4,
"outputs": [
{
"output_type": "execute_result",
"execution_count": 4,
"data": {
"text/html": "<div>\n<style scoped>\n .dataframe tbody tr th:only-of-type {\n vertical-align: middle;\n }\n\n .dataframe tbody tr th {\n vertical-align: top;\n }\n\n .dataframe thead th {\n text-align: right;\n }\n</style>\n<table border=\"1\" class=\"dataframe\">\n <thead>\n <tr style=\"text-align: right;\">\n <th></th>\n <th>index</th>\n <th>company</th>\n <th>body-style</th>\n <th>wheel-base</th>\n <th>length</th>\n <th>engine-type</th>\n <th>num-of-cylinders</th>\n <th>horsepower</th>\n <th>average-mileage</th>\n <th>price</th>\n </tr>\n </thead>\n <tbody>\n <tr>\n <th>56</th>\n <td>81</td>\n <td>volkswagen</td>\n <td>sedan</td>\n <td>97.3</td>\n <td>171.7</td>\n <td>ohc</td>\n <td>four</td>\n <td>85</td>\n <td>27</td>\n <td>7975.0</td>\n </tr>\n <tr>\n <th>57</th>\n <td>82</td>\n <td>volkswagen</td>\n <td>sedan</td>\n <td>97.3</td>\n <td>171.7</td>\n <td>ohc</td>\n <td>four</td>\n <td>52</td>\n <td>37</td>\n <td>7995.0</td>\n </tr>\n <tr>\n <th>58</th>\n <td>86</td>\n <td>volkswagen</td>\n <td>sedan</td>\n <td>97.3</td>\n <td>171.7</td>\n <td>ohc</td>\n <td>four</td>\n <td>100</td>\n <td>26</td>\n <td>9995.0</td>\n </tr>\n <tr>\n <th>59</th>\n <td>87</td>\n <td>volvo</td>\n <td>sedan</td>\n <td>104.3</td>\n <td>188.8</td>\n <td>ohc</td>\n <td>four</td>\n <td>114</td>\n <td>23</td>\n <td>12940.0</td>\n </tr>\n <tr>\n <th>60</th>\n <td>88</td>\n <td>volvo</td>\n <td>wagon</td>\n <td>104.3</td>\n <td>188.8</td>\n <td>ohc</td>\n <td>four</td>\n <td>114</td>\n <td>23</td>\n <td>13415.0</td>\n </tr>\n </tbody>\n</table>\n</div>",
"text/plain": " index company body-style wheel-base length engine-type \\\n56 81 volkswagen sedan 97.3 171.7 ohc \n57 82 volkswagen sedan 97.3 171.7 ohc \n58 86 volkswagen sedan 97.3 171.7 ohc \n59 87 volvo sedan 104.3 188.8 ohc \n60 88 volvo wagon 104.3 188.8 ohc \n\n num-of-cylinders horsepower average-mileage price \n56 four 85 27 7975.0 \n57 four 52 37 7995.0 \n58 four 100 26 9995.0 \n59 four 114 23 12940.0 \n60 four 114 23 13415.0 "
},
"metadata": {}
}
]
},
{
"metadata": {
"trusted": true
},
"cell_type": "code",
"source": "print('Maximum:', Automobile_data.price.max(),Automobile_data.company)",
"execution_count": 5,
"outputs": [
{
"output_type": "stream",
"text": "Maximum: 45400.0 0 alfa-romero\n1 alfa-romero\n2 alfa-romero\n3 audi\n4 audi\n5 audi\n6 audi\n7 bmw\n8 bmw\n9 bmw\n10 bmw\n11 bmw\n12 bmw\n13 chevrolet\n14 chevrolet\n15 chevrolet\n16 dodge\n17 dodge\n18 honda\n19 honda\n20 honda\n21 isuzu\n22 isuzu\n23 isuzu\n24 jaguar\n25 jaguar\n26 jaguar\n27 mazda\n28 mazda\n29 mazda\n ... \n31 mazda\n32 mercedes-benz\n33 mercedes-benz\n34 mercedes-benz\n35 mercedes-benz\n36 mitsubishi\n37 mitsubishi\n38 mitsubishi\n39 mitsubishi\n40 nissan\n41 nissan\n42 nissan\n43 nissan\n44 nissan\n45 porsche\n46 porsche\n47 porsche\n48 toyota\n49 toyota\n50 toyota\n51 toyota\n52 toyota\n53 toyota\n54 toyota\n55 volkswagen\n56 volkswagen\n57 volkswagen\n58 volkswagen\n59 volvo\n60 volvo\nName: company, Length: 61, dtype: object\n",
"name": "stdout"
}
]
},
{
"metadata": {
"trusted": true
},
"cell_type": "code",
"source": "Automobile_data.company.value_counts()",
"execution_count": 6,
"outputs": [
{
"output_type": "execute_result",
"execution_count": 6,
"data": {
"text/plain": "toyota 7\nbmw 6\nnissan 5\nmazda 5\nvolkswagen 4\naudi 4\nmitsubishi 4\nmercedes-benz 4\nchevrolet 3\nalfa-romero 3\nisuzu 3\njaguar 3\nhonda 3\nporsche 3\ndodge 2\nvolvo 2\nName: company, dtype: int64"
},
"metadata": {}
}
]
},
{
"metadata": {
"trusted": true
},
"cell_type": "code",
"source": "index = np.arange(len(Automobile_data.company.value_counts()))",
"execution_count": 7,
"outputs": []
},
{
"metadata": {
"trusted": true
},
"cell_type": "code",
"source": "def plot_bar_x():\n # this is for plotting purpose\n index = np.arange(len(Automobile_data.company.value_counts()))\n plt.bar(index, Automobile_data.company.value_counts())\n plt.xlabel('company', fontsize=20)\n plt.ylabel('No of cars', fontsize=20)\n plt.xticks(index, Automobile_data.company.value_counts(), fontsize=5, rotation=30)\n plt.title('company cars analysis')\n plt.show()",
"execution_count": 8,
"outputs": []
},
{
"metadata": {
"trusted": true
},
"cell_type": "code",
"source": "plot_bar_x()",
"execution_count": 9,
"outputs": [
{
"output_type": "display_data",
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEbCAYAAAA1T5h7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvqOYd8AAAHPlJREFUeJzt3XmcHFW5//HPl0DCkgBihp1h2GT1skWQ5UJARMIusir4gwsGLiKgIDcginivFy6iiJdF4xVBRQFZFAlBRYiArAmLyiYQJ2xhCZCwL4Hn98epKTpNT2ZqpmaqJ/19v1796u6qU0893Zn003VO1ylFBGZmZgALVZ2AmZk1DxcFMzPLuSiYmVnORcHMzHIuCmZmlnNRMDOznIuCWQuSNEXSYf2Mcb+ksSWlZE1i4aoTMLOhKSLWrzoHK5+PFMwGkaRhVedgNj8uCtZnklaRdKWk5yW9IOmcbPlCkk6WNEPSc5J+JmmpbF2HpJB0iKQnJL0k6QhJH5P0V0mzu+Jk7Q+W9BdJ/ytpjqSHJH2iZv0hkh6U9Iqk6ZIOr1k3VtKTko7L8pgp6ZBs3cckPStp4Zr2n5F0bzevdTFJ381e0xxJt0haLFv3a0nPZMtvkrR+zXYXSjpf0rWSXgO2k7SzpAeynJ+SdHw3+1xD0g3ZeztL0sWSlq5Z3ynp+Ox9myPpUkmLZus+JOma7N/mpezxyg32MULSi5I+WrNsWUlvSGqTNDrbdnbW7mZJC9Xsf4fs8WaSpkp6OXtfv9fNn401ORcF65PsG+81wAygA1gJuCRbfXB22w5YHRgJnFMXYnNgLWA/4PvA14AdgPWBfSVtW9d2OjAaOAW4UtIy2brngF2BJYFDgLMkbVKz7fLAUll+hwLnSvpQRNwFvAB8sqbtgcDPu3nJZwKbAlsCywAnAO9l6yZnr2VZ4G7g4rptPwt8GxgF3AL8BDg8IkYBGwA3dLNPAacBKwLrAqsA36xrsy+wE7Aa8C+k9x3S/+2fAqsC7cAbfPDfgIh4i/TvdmDN4gOA6yPieeA44EmgDVgOOAloNDfO2cDZEbEksAZwWTevyZpdRPjmW+EbsAXwPLBwg3V/Ao6seb428A5pDKuD9KGyUs36F4D9ap5fARybPT4YeBpQzfo7gYO6yes3wDHZ47GkD8OFa9Y/B3w8e/wfwMXZ42WA14EVGsRcKIuzYS/el6Wz17dU9vxC4Gd1bR4HDgeWLPie7wncU/O8Eziw5vkZwA+72XYj4KWa51OAw7LHmwNPAAtlz6cC+2aPvwX8FlizQcxOYIfs8U3AqcDoqv82fevfzUcK1lerADMiYm6DdSuSjiC6zCAVhOVqlj1b8/iNBs9H1jx/KrJPnpp4KwJIGifp9qxrYzawM+mIossLdTm+XhP7F8BukkaSvnHfHBEzG7ye0cCiwGP1KyQNk3S6pMckvUz6oOzapssTdZt9JstzhqQ/S9qiwT67unEuybqYXs7yHV3X7JlGr03S4pJ+lHV3vUz60F5aDcY0IuIO4DVgW0nrAGsCV2ervwM8Cvwh656b0ChX0lHYR4CHJN0laddu2lmTc1GwvnoCaK/tk6/xNKnboks7MJd5P/iLWEmS6uI9LWkE6ajiTGC5iFgauJbU7dKjiHgKuA34NHAQ3XcdzQLeJHWL1PsssAep62sp0pEQdTnM090SEXdFxB6k7qbf0H1Xy2nZtv8SqVvmQHr52kjdPmsDm2fbbtMgr1oXZfEPAi6PiDezXF+JiOMiYnVgN+ArtWM6Na/pkYg4IHtN/wNcLmmJXuZqTcRFwfrqTmAmcLqkJSQtKmmrbN2vgC9LWi37Fv7fwKXdHFX0xrLA0ZIWkbQPqX/9WmA4MILUjTVX0jhgx4Kxf0YaH/gocFWjBhHxHnAB8D1JK2ZHB1tkRWkU8BapC2xx0mvtlqThkj4naamIeAd4GXi3m+ajgFeB2ZJWAr5a4HWNIh1xzc7GX07pof3PScXxQNJ70pXvrpLWzIpyV64fyFfSgZLasvdqdra4u9dlTcxFwfokIt4lfXNck9RH/iRp0BjSB+jPSV0W/yR9y/5SP3Z3B2kgdxZpwHbviHghIl4BjiZ9036J9K396m6jNHYV6ajmqoh4bT7tjgf+BtwFvEj6NrwQ6QN0BvAU8ABwey/2eRDQmXXrHMG8g7y1TgU2AeYAk4ArexG7y/eBxUjv2e3AdfNrHBFPkgbJA7i5ZtVawPWk4nQbcF5ETGkQYifgfkmvkgad9+862rChRfN21Zo1F0kHkwZEtx7AfTxG+jXQ9QO1j6FA0gXA0xFxctW5WHV8RrO1NEmfIX077u5noS1BUgewF7BxtZlY1VwUrGVJmgKsR/p563s9NF9gSfpP4MvAaRHxz6rzsWq5+8jMzHIeaDYzs9yQ6z4aPXp0dHR0VJ2GmdmQMW3atFkR0dabtkOuKHR0dDB16tSq0zAzGzIkzei5VeLuIzMzy7komJlZzkXBzMxyLgpmZpZzUTAzs5yLgpmZ5SotCpLWlnRvze1lScdWmZOZWSur9DyFiHiYdJnArmv+PkU3c9qbmdnAa6buo08Aj0VEr0+yMDOzcjXTGc37k67Y9QGSxgPjAdrb2/u8g44Jk/q8befpu/R5WzOzoaIpjhQkDQd2B37daH1ETIyIMRExpq2tV9N3mJlZHzRFUQDGAXdHRF8v7G5mZiVolqJwAN10HZmZ2eCpvChIWhz4JMUuSm5mZgOg8oHmiHgd+HDVeZiZWRMcKZiZWfNwUTAzs5yLgpmZ5VwUzMws56JgZmY5FwUzM8u5KJiZWc5FwczMci4KZmaWc1EwM7Oci4KZmeVcFMzMLOeiYGZmORcFMzPLuSiYmVnORcHMzHIuCmZmlnNRMDOznIuCmZnlXBTMzCxXeVGQtLSkyyU9JOlBSVtUnZOZWatauOoEgLOB6yJib0nDgcWrTsjMrFVVWhQkLQlsAxwMEBFvA29XmZOZWSur+khhdeB54KeSNgSmAcdExGu1jSSNB8YDtLe3D3qSjXRMmNTnbTtP36XETMzMylP1mMLCwCbA+RGxMfAaMKG+UURMjIgxETGmra1tsHM0M2sZVReFJ4EnI+KO7PnlpCJhZmYVqLQoRMQzwBOS1s4WfQJ4oMKUzMxaWtVjCgBfAi7Ofnk0HTik4nzMzFpW5UUhIu4FxlSdh5mZVT+mYGZmTcRFwczMci4KZmaWc1EwM7Oci4KZmeVcFMzMLOeiYGZmORcFMzPLuSiYmVnORcHMzHIuCmZmlnNRMDOznIuCmZnlXBTMzCznomBmZrl+X09B0jrAOOB14JKImNPvrMzMrBK9PlKQ9A1JMyUtU7NsB+Ae4EzgPOBuSR8uP00zMxsMRbqPxgEPRcSLNctOAwI4BTgfWA04prz0zMxsMBUpCh3Ag11PJK0EbAqcFxH/FRFHATcAe5aaoZmZDZoiReFDQO1Rwlako4RrapZNA9pLyMvMzCpQpCg8D6xU83w74B3gjpplwwvGNDOzJlLk10f3ArtL2gB4E9gPuCUi3qhp0wHMLJKApE7gFeBdYG5EjCmyvZmZladIUTgDuBG4r2bZd7seSFoUGAtc24c8touIWX3YzszMStTrohARN0vaFfgCaSzh4oiYXNNkS6ATuKrUDM3MbNAUOnktIq4Drutm3Q3Axn3IIYA/SArgRxExsb6BpPHAeID29gVvHLtjwqR+bd95+i6lxauPZWatpcjJa+9K+uUA5LBVRGxCOg/ii5K2qW8QERMjYkxEjGlraxuAFMzMDIr9UugVYEbZCUTE09n9c6Sup83K3oeZmfVOkaJwD7BemTuXtISkUV2PgR2Bv5e5DzMz670iReF/gJ0lfbLE/S8H3CLpPuBOYFI2bmFmZhUoMtC8LGmQebKk3wB3Ac+QBornERE/603AiJgObFggBzMzG0BFisKFpAIgYK/sBvMWBWXPe1UUzMysuRQpCocMWBZmZtYUipy8dtFAJmJmZtXz5HVmZpZzUTAzs1yhaS6ycwmOBD5FmkZ7RINmERFrlJCbmZkNsl4XBUlLA7eQTmB7GVgSmEO6hsJiWbOnSddYMDOzIahI99HJpIJwKOkqbABnASNJM6TeDTwGrFtmgmZmNniKFIXdgZsi4qcRkZ+bEMntwM7AOsDXSs7RzMwGSZGisArpaKDLe9SMKWQT2k0G9i8nNTMzG2xFisLrpEtmdpkDLF/X5lnmvY6zmZkNIUWKwhOko4UuDwDbSBpWs2xr0nxIZmY2BBUpCn8GtpWk7PmlwBrAJElflPRr4OP07RrNZmbWBIqcp3AR6eenK5OOGn4IbA/sSboOAsBfSL9SMjOzIajI3Ed3A/9e83wusJekTYE1gU7groh4r+wkzcxscBQ6o7mRiJgGTCshFzMzq1ivxxQkLSapXdLwbtaPyNYvWl56ZmY2mIoMNH8DeJh0BnMjSwAPASf1NykzM6tGkaIwDrg+Il5stDJbfj2waxmJmZnZ4CtSFDqAf/TQ5h9ZOzMzG4KKFIVFSFNbzE8AhccUJA2TdI+ka4pua2Zm5SlSFKYD2/bQZiwwow95HAM82IftzMysREWKwtXAppJOaLRS0gRgE+A3RRKQtDKwC/B/RbYzM7PyFTlP4Uzgc8BpkvYF/gA8RZoA71PARsDjwBkFc/g+cAIwquB2ZmZWsiJnNL8kaSxwMbAF6agggK65kG4FDoyIl3obU9KuwHMRMS2L3V278cB4gPb29t6GtxJ0TJjU5207T9+ltFj18cqM1d949bHMhrJCZzRHRCewlaRNSJPfLQ3MBm7PpsEoaitgd0k7kwaol5T0i4g4sG6/E4GJAGPGjIkPhjEzszL0aZqLrAD0pQjUxzkROBEgO1I4vr4gmJnZ4Cky0GxmZgu4fk+IV5aImAJMqTgNM7OW5iMFMzPLuSiYmVnORcHMzHLdFgVJu0v6yGAmY2Zm1ZrfkcJVwP5dTyRNl3T0wKdkZmZVmV9ReIc0M2qXDtLJamZmtoCaX1F4HNha0rCaZT6b2MxsATa/8xR+BXwdeFHSC9myL0s6pIeYERFrlJKdmZkNqvkVhf8E3iBNa70i709+p/lsQy/Wm5lZk+q2KETEXOD07Iak94CzIuJbg5SbmZkNsiLnKVwE3DtQiZiZWfWKXE+hp7EEMzMb4gpPiCepHfg8sDHpJ6pzgGnALyKiL9dnNjOzJlGoKEj6AvADYDjzDijvCXxd0jER8aMS8zMzs0HU6zEFSZ8Afgi8BXwb2B5YN7v/L+BN4NysnZmZDUFFjhS+CrwCbBoRj9UsfxiYIukiUjfSV4E/lZeimZkNliK/PtoMuKyuIOSy5b/O2pmZ2RBUpCgsBszqoc3zWTszMxuCihSFGaTxg/nZjjRnkpmZDUFFisJVwMcknSdpntlSJS0l6WxS19GVZSZoZmaDp8hA82nA7sARwOck3QfMBJYHNgJGAQ9l7czMbAjq9ZFCRLwMbAn8GBgGbA3sA/xr9vzHwFZZu16RtKikOyXdJ+l+SacWyt7MzEpV6OS1iJgDHC7pi8A6wFKkM5ofjoh3+rD/t4DtI+JVSYsAt0iaHBG39yGWmZn1U+FpLiCfQfXv/d15RATwavZ0kezmC/mYmVWkT0WhTNmV3aYBawLnRsQdDdqMB8YDtLe3D26CZgV1TJjU5207T9+ltFj18cqM1d94zRqrUbxWU+TXRwMiIt6NiI2AlYHNJG3QoM3EiBgTEWPa2toGP0kzsxZReVHoEhGzgSnAThWnYmbWsiotCpLaus55kLQYsAPpZ61mZlaBqscUVgAuysYVFiLNrXRNxTmZmbWsSotCRPyVdLEeMzNrAn0uCpKWJDtPocgJa2Zm1rwKjSlIGiZpgqRHgZeATuAlSY9my6vujjIzs37o9Ye4pOHAdcC2pBPMniDNfbQC0EG6GttOknaMiLfLT9XMzAZakSOFrwBjgUnAuhHRERFbREQHsDbwO9I8SF8pO0kzMxscRYrCZ0lTW+wZEY/UrsiuurYXcD/wufLSMzOzwVSkKKwJTI6I9xqtzJZPBtYoIzEzMxt8RYrC28DIHtosAfRltlQzM2sCRYrCX4G9JTWcfEjSaGBv4L4yEjMzs8FXpCicA7QBd0o6VNLqkhaTtJqkQ4A7svXnDESiZmY28Hr9k9SIuEzSRsAEYGKDJgLOiIjLykrOzMwGV9Err50k6WrgUNL0FF1XXrsHuCAibis/RTMzGyyFz0DOLpXpy2WamS2AmuZ6CmZmVr35HilI6lPR6O5cBjMza249dR/15ZyD6EVcMzNrQj19eD9B+pDvjZHAh/uXjpmZVWm+RSGb7G6+JC0CfAn4Wraos99ZmZlZJfo10CxpH+BB4Duk8xROANYtIS8zM6tAn/r+JW0JfBfYDJgL/AD4VkS8VGJuZmY2yAoVBUlrAqcDnyYdGVwOTIiI6QOQm5mZDbJedR9JWkbS2aTrKexFOnlty4jYtz8FQdIqkm6U9KCk+yUd09dYZmbWfz2dpzAcOBY4kTSlxWOkI4MrStr/XOC4iLhb0ihgmqQ/RsQDJcU3M7MCeuo+ehhoB14kFYdzI+LdsnYeETNJ13kmIl6R9CCwEuCiYGZWgZ6Kwqqk8xQEHA8cL6mnmBERqxZNRFIHaZK9O4pua2Zm5ejNQLOAZbLbgJA0ErgCODYiXm6wfjwwHqC9vX2g0jAzm0fHhEn92r7z9F1Ki1cfa6DMd6A5Ihbqy61IAtnJb1cAF0fEld3kMTEixkTEmLa2hhd+MzOzElQ6S6pSX9RPgAcj4ntV5mJmZtVPnb0VcBCwvaR7s9vOFedkZtayKp3NNCJuIY1ZmJlZE6j6SMHMzJqIi4KZmeVcFMzMLOeiYGZmORcFMzPLuSiYmVnORcHMzHIuCmZmlnNRMDOznIuCmZnlXBTMzCznomBmZjkXBTMzy7komJlZzkXBzMxyLgpmZpZzUTAzs5yLgpmZ5VwUzMws56JgZmY5FwUzM8tVWhQkXSDpOUl/rzIPMzNLqj5SuBDYqeIczMwsU2lRiIibgBerzMHMzN5X9ZFCr0gaL2mqpKnPP/981emYmS2whkRRiIiJETEmIsa0tbVVnY6Z2QJrSBQFMzMbHC4KZmaWq/onqb8CbgPWlvSkpEOrzMfMrNUtXOXOI+KAKvdvZmbzcveRmZnlXBTMzCznomBmZjkXBTMzy7komJlZzkXBzMxyLgpmZpZzUTAzs5yLgpmZ5VwUzMws56JgZmY5FwUzM8u5KJiZWc5FwczMci4KZmaWc1EwM7Oci4KZmeVcFMzMLOeiYGZmORcFMzPLuSiYmVmu8qIgaSdJD0t6VNKEqvMxM2tllRYFScOAc4FxwHrAAZLWqzInM7NWVvWRwmbAoxExPSLeBi4B9qg4JzOzlqWIqG7n0t7AThFxWPb8IGDziDiqrt14YHz2dG3g4QFIZzQwq0njNWussuO1Qqyy47VCrLLjtUKseqtGRFtvGi48QAn0lhos+0CVioiJwMQBTUSaGhFjmjFes8YqO14rxCo7XivEKjteK8Tqj6q7j54EVql5vjLwdEW5mJm1vKqLwl3AWpJWkzQc2B+4uuKczMxaVqXdRxExV9JRwO+BYcAFEXF/RemU3T1VZrxmjVV2vFaIVXa8VohVdrxWiNVnlQ40m5lZc6m6+8jMzJqIi4KZmeVcFABJ+0jaoKRYH5W0dBmxsnirSlqsCWONkTS62WKVHa/kWJtIWq6MWGXHa4VYZceTtKGkXv32fzBj9VdLFwVJi0raE1gfWLOEeDsC+wHrlhBrlKRjgX2BFZolVhZvQ2BHYNNmilV2vLJiSRoh6dPAF4B+/w69zHitEGsAcltc0heBbYGDmiVWWao+ea1SEfGmpCnADLKT5iQp+j76vhzwALCKpCUj4vf9SO9V4A3gBWA7SWv1I16ZsQBeJp1VvpOktyJiSpPEasrcIuItSTcAiwBLS9oyIm7ta1JlxmuFWAOQ2+uSLgdeAj7W15zKjlWWlj5SAIiI2cB7pG/49KMgANwKfAhYAmiX1OiM7d7mFcBPIuLnwFtAn7t9yoyVeRVYC5gGjOzP6yw5VtPmFhFzIuIy4F1g1X7kVHq8Vog1ALk9S5q77QBJY5slVhn8k9SMpI8Dd/SzKCBpHdIf3J8iYm4JeW0MdABXR8S7zRLLisv+xlYEflvG+19mvFaINQC5fZ50BH5FRLzXLLH6y0WhyfWzO2vAYpUdrxVya4XX2Myxyo4naaGyPsDLjNVfLgpmZpZr+TEFMzN7n4uCmZnlXBTMzCznomBmZjkXBTMzy7komJlZzkXBzMxyLgrW1CRtJulSSU9JekvSTEl/kLRvXbt9Jd0kaY6kNyT9TdKJkkY0iNmZ3UZKOkvSE9k292YTJCJpYUknSXpE0puSHlO6SmB9rLGSQtI3JW0h6fosh1ck/V7SByZfk7SipG9I+oukZyS9LelpSb+U9IHJFCV1ZPu4MHt8iaRZWV5TJe1a1/6IrP03unlPl5f0jqS/9fwvYK3GJ69Z05L0BeB80lw1VwOPAMuSZrmcHRFjs3b/DZwIzAIuJ81ZNI40++2fgU9GxDs1cTtJE6M9DiwD/BEYDhwALE6aGfVIYHNgMmm+qH2yfe8fEZfWxBoL3AhcB2wPXA/cR5p1dy/gHWDHiLi5Zpv9gQuy7Tp5f46lXYG3ga0i4r6a9h3AP4Ep2WuaDtyW5b5f9lp2iIgbs/YjgaeAOcBq9dM5SDoJ+DbwpYg4p7v331pURPjmW9PdgPVIH6gvAus3WL9ydr8FaYbbx4Hla9YvDPwuW3dS3bad2fLfASNqlv9rtvxF4C5g6Zp1q5M+sO+pizU22yaAo+rW7ZEtfwRYqGb5ssCoBq9pQ1KBmFy3vKNmH6fUrftUtvzauuXnZMt3rVsuUlF5DViq6n9n35rvVnkCvvnW6Ab8b/ah9uUe2v04aze+wbqPkI4yptct7yoKazTYZnq2bvsG624E5gLDapZ1FYV5Pvhr1k/J1m/by9d9NfAmsEjNsq6i0Fm775r1M4BZdcvW7yp8dcu7isgFVf8b+9acN48pWLP6eHY/uYd2m2T3N9SviIh/AE8Cq+mDV8ObHRGPNYj3dHY/rcG6p4BhwPIN1t0cjSc0m5Ldb1y7UNIukn6XjZG8k40BBLAbMAJodLW3e6PxzJ5PkKZsz0XE/cBNwDhJq9SsGp/d/7BBHLPWvsiONbWuD/Gnemi3VHY/s5v1M4H2rN3smuVzumk/F9Lc+92tI/Xh13u2m3jP1OWJpKOBs0kXVvkjqevrddI3+D1J3UgfGCBn3vzr82r0Be88YBvgMOAUScsDu5OKy53dxLIW56JgzarrA3Al4KH5tOv68F4eaPTNf4W6dgOlu+v+dh1VzIH0qybgVFKx2CQi5ilmkrYoMacrScXqUEnfAv6N9H/+RyXuwxYw7j6yZnV7dj+uh3b3ZPdj61dIWhNYGfhnpCvsDaStJTX6/9SVV1eeo0lHQbc2KAgjeb87rN8i/eLq/0iFdTfSEcOrwMVl7cMWPC4K1qzOJ3WLfF3SevUrJa2cPbwguz9ZUlvN+mHAmaS/8Z8McK6QflJ6ZF2Oe5AuyP4o0PWT1OdIXUWbZkWgq+0ipC6lRmMJ/TGRNNh+DrAa8MuIeKXkfdgCxN1H1pQi4gFJR5IGRO+R9FvSL3w+TDpP4RVgu4i4VdIZwAnA35Uugv4a6QhjA+AW4DuDkPJ1wHcljWPe8xTeBA7tGoSOiPck/QCYAPwte13Dge1I5x3cmD0uRUQ8LmkSaSwB3HVkPfCRgjWtiPgxsDVwDakb5qukD7dZwLk17f6DdOLZI8DngaNJf9snk05ce3sQ0r0jy3EEcBSpKN0AbBMRN9W1/TpwHOmavIeTisdU0sXbHx+A3LqOpqZGxN0DEN8WID6j2awfas5oPjUivlltNo1J+iZwCnBYRAxGV5oNYT5SMFuASRoFHEE6S/tXFadjQ4DHFMwWQJJ2If2SaTfSz2WPj4jXq83KhgIXBbMF0z7A/yOdp3AacFa16dhQ4TEFMzPLeUzBzMxyLgpmZpZzUTAzs5yLgpmZ5VwUzMws9/8B6whrPHT9ggMAAAAASUVORK5CYII=\n",
"text/plain": "<Figure size 432x288 with 1 Axes>"
},
"metadata": {
"needs_background": "light"
}
}
]
},
{
"metadata": {
"trusted": true
},
"cell_type": "code",
"source": "import seaborn as sns\nsns.set_style(\"darkgrid\")\nplt.plot(Automobile_data.company,Automobile_data.price)\nplt.show()",
"execution_count": 10,
"outputs": [
{
"output_type": "display_data",
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAD8CAYAAACcjGjIAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvqOYd8AAAIABJREFUeJzsvXlgU2W+//86SZqkTdqktElDQ9mrMOwKIgMDM3VaREQWyzjqoHBdAS+DuPxwvIPIIHrv9bqMeOcrw1wHx20EbZ2h9ypDHSl1Q8VawMJYtdJCk0Bpmy6kadL8/kibQVvomuac9Hn9Azyc55Pn5Jyc93me57NIgUAggEAgEAgE56CK9AAEAoFAID+EOAgEAoGgHUIcBAKBQNAOIQ4CgUAgaIcQB4FAIBC0Q4iDQCAQCNohxEEgEAgE7RDiIBAIBIJ2CHEQCAQCQTs0kR5AT2lpacHv71lwt1ot9bhvf9gLh82BZi8cNuVuLxw2B5q9cNiUm72YGHWXjlOsOPj9AWpqGnvU12yO63Hf/rAXDpsDzV44bMrdXjhsDjR74bApN3sWS3yXjhPLSgKBQCBohxAHgUAgELRDiINAIBAI2iHEQSAQCATtEOIgEAgEgnYIcRAIBAJBO4Q4CAQCgaAdXRYHv9/PokWLuOOOOwBYv349GRkZLFy4kIULF1JSUgJAIBBg8+bNZGZmsmDBAo4cORKykZOTQ1ZWFllZWeTk5ITaDx8+zIIFC8jMzGTz5s2IyqUCQfdoCQT4yyEHXl9LpIciiBK6HAT3wgsvMGrUKOrr60Nt999/P1deeeV3jisoKKCsrIw9e/bw+eefs3HjRnbu3ElNTQ1bt27l9ddfR5IklixZQkZGBiaTiY0bN7Jp0yYmT57MbbfdRkFBAXPmzOm7sxQIopxjrnp+s+cfpCYbmDq4a0FOAsGF6NLMweFw8O6775Kdnd3psfn5+SxatAhJkpg8eTJutxuXy0VhYSEzZ87EbDZjMpmYOXMm+/fvx+VyUV9fz5QpU5AkiUWLFpGfn9/rExMIBhL+luBs2+H2RHgkgmihSzOHLVu2cN9999HQ0PCd9ieffJJnn32WGTNmcO+996LVanE6ndhsttAxNpsNp9PZrj0lJaXD9rbjO0OtljCb47oy/A76qnrctz/shcPmQLMXDptytmes8wJwqt4r2zEqwV44bMrd3vnoVBz+/ve/M2jQIMaPH89HH30Ual+3bh0Wi4Xm5mZ+/etfs23bNu66664O9wskSep2e2eI3ErCXn/blLO9+vrgjKGy9qxsx6gEe+GwKTd7fZZb6eDBg7zzzjtkZGSwbt06PvzwQ+69916sViuSJKHValmyZAmHDh0Cgm/+Docj1N/hcGC1Wtu1O53ODtvbjhcIBN3H5W6K9BAEUUKn4nDPPfdQUFDAO++8wxNPPMHll1/O448/jsvlAoLeSXv37iU9PR2AjIwMcnNzCQQCFBUVER8fj9VqZdasWRQWFlJbW0ttbS2FhYXMmjULq9WKwWCgqKiIQCBAbm4uV1xxRXjPWiCIUpxCHAR9RI9Tdt97771UV1cTCAQYM2YMDz/8MABz5sxh3759ZGZmEhsby5YtWwAwm82sWrUqtKm9evVqzGYzABs3buSBBx7A4/Ewe/ZsZs+e3dvzEggGJK46sSEt6Bu6JQ7Tp09n+vTpQNC1tSMkSeKhhx7q8P+ys7M79HiaMGECu3fv7s5QBAJBB7g9PjzNfvRdLOgiEJwPESEtEEQZp+q9kR6CIAoQ4iAQRBmnGsS+g6D3CHEQCKKMU3Vi5iDoPUIcBIIo41SDEAdB7xHiIBBEGafqxbKSoPcIcRAIogyxIS3oC4Q4CARRhpg5CPoCIQ4CQRRhio0RMwdBnyDEQSCIIqzxOk43eEXBLEGvEeIgEEQR1ngdTb4W3B5fpIciUDhCHASCKCIlQQ8Id1ZB7xHiIDP8LQE2/O/RUGUvgaA7pMTrALEpLeg9QhxkxisHT/B/JS52fFAW6aEIFEho5iA2pQW9RIiDzGj0BteK65vEmrGg+1jEzEHQRwhxEAiiCJ1GhUmvETMHQa/psjj4/X4WLVrEHXfcAUB5eTlLly4lKyuLtWvX4vUGb0av18vatWvJzMxk6dKlVFRUhGw899xzZGZmMnfuXPbv3x9qLygoYO7cuWRmZrJt27a+OjeBYEBiMeqEOAh6TZfF4YUXXmDUqFGhfz/++OMsX76cPXv2kJCQwK5duwDYuXMnCQkJ/O1vf2P58uU8/vjjAJSWlpKXl0deXh7bt2/n4Ycfxu/34/f72bRpE9u3bycvL4/du3dTWlrax6cpEAwcko1asawk6DVdEgeHw8G7774bquIWCAT48MMPmTt3LgCLFy8mPz8fgHfeeYfFixcDMHfuXD744AMCgQD5+fnMnz8frVZLWloaw4YNo7i4mOLiYoYNG0ZaWhparZb58+eHbAkEgu5jNWo5LVxZBb2kS+KwZcsW7rvvPlSq4OHV1dUkJCSg0QSrjNpsNpxOJwBOp5PBgwcDoNFoiI+Pp7q6GqfTic1mC9lMSUnB6XSet10gEPSMZKOOqgYvPuEOLegFndaQ/vvf/86gQYMYP348H3300XmPkyQJoMOwfUmSztve0tJyXlsXQq2WMJvjOj2u476qHvcNtz29PgYIfgdyHaMS7IXDppztGVsL/KhUEsMsRloC4NeoSW51be0pcj7ncNgLh0252zsfnYrDwYMHeeeddygoKKCpqYn6+noeeeQR3G43Pp8PjUaDw+HAarUCwVlEZWUlNpsNn89HXV0dZrMZm82Gw+EI2XU6naE+52u/EH5/gJqaxm6fMIDZHNfjvuG25/E0A0GRlesYlWAvHDblbK++3gNAS0sAgyr4clV6shZdBy9f3UHO5xwOe+GwKTd7Fkt8l47rdFnpnnvuoaCggHfeeYcnnniCyy+/nP/6r/9i+vTpvP322wDk5OSQkZEBQEZGBjk5OQC8/fbbXH755UiSREZGBnl5eXi9XsrLyykrK2PixIlMmDCBsrIyysvL8Xq95OXlhWwJBILuY43XAnBabEoLekGnM4fzcd9993H33Xfz1FNPMXbsWJYuXQpAdnY29913H5mZmZhMJp588kkA0tPTmTdvHldddRVqtZoNGzagVqsB2LBhA7feeit+v59rr72W9PT0Pjg1gWBgYjEExcEl3FkFvaBb4jB9+nSmT58OQFpaWsh99Vx0Oh2//e1vO+y/cuVKVq5c2a59zpw5zJkzpztDEQgE5yExTotaEjMHQe8QEdICQZShVkkkGbQiEE7QK4Q4CARRSLKIkhb0EiEOAkEUYjVqOdUglpUEPUeIg0AQhSSLZSVBLxHiIBBEIdZ4HW6PD0+zP9JDESgUIQ4CQRSS3OrOKnIsCXqKEAeBIAqxGtuK/ghxEPQMIQ4CQRSSbAzOHETqbkFPEeIgEEQhlpA4RO/MwdcS4KNvqiI9jKhFiINAEIXE6zToNKqoFof3vj7DL/7nY07WeiI9lKhEiIPMiI0J5ptye3wRHolAyUiShCXKK8I1+fytf/Yu86ygY4Q4yAy7KZh/v6L6bIRHIlA6FqOOU8JbSdBDhDjIjITWYj8V1X2bo14w8LAYonvmIAgvQhxkRlsRPDFzkBeVbg+uOmWtbVta8yt1VIVRIOgMIQ4ypcErIlvlxDW/P8DM/3g30sPoFhajliZfC3VNYv9K0H2EOMgY8cYn6A0DwZ1VED46FYempiays7O55pprmD9/fqiQz/r168nIyGDhwoUsXLiQkpISIPhA27x5M5mZmSxYsIAjR46EbOXk5JCVlUVWVlaolCjA4cOHWbBgAZmZmWzevFk8FFs509gc6SEIvoevRTn3pqU1Svq0EAdBD+i0EpxWq2XHjh0YDAaam5u54YYbmD17NgD3338/V1555XeOLygooKysjD179vD555+zceNGdu7cSU1NDVu3buX1119HkiSWLFlCRkYGJpOJjRs3smnTJiZPnsxtt91GQUGBqAwHnKj1kNSaI0cgD1x1TaS2epTJnbaZg0tsSgt6QKczB0mSMBgMAPh8Pnw+H1LbrmkH5Ofns2jRIiRJYvLkybjdblwuF4WFhcycOROz2YzJZGLmzJns378fl8tFfX09U6ZMQZIkFi1aRH5+ft+doYIRwT3yo6JGOY4CIvmeoDd0qYa03+9nyZIlHD9+nBtuuIFJkybxyiuv8OSTT/Lss88yY8YM7r33XrRaLU6nE5vNFuprs9lwOp3t2lNSUjpsbzu+M9RqCbM5rjvnek5fVY/7htue8RwvpTNN/j6zK+dzDoe9vraZGBdDdWMz1c0tsrwmxrqgAKhU3/1dmGJjqPX2fMxyvs4GQ3DZLD5eL9sxKsHe+eiSOKjVat58803cbjerV6/mH//4B+vWrcNisdDc3Myvf/1rtm3bxl133dXhfoEkSd1u7wy/P0BNTc9iAczmuB73Dbe9+nOWAL5yuvvMrpzPORz2+tqmxaClurGZLyvleU3q64OzzJaW7/4ukg0xnDjTEJW/lYbWSnd1dR5qtH3nWyPnc+4LexZLfJeO69Y3mpCQwPTp09m/fz9WqxVJktBqtSxZsoRDhw4BwTd/h8MR6uNwOLBare3anU5nh+1txwvEspKcUKuCLywnFLSsBGAx6HCJDWlBD+hUHM6cOYPb7QbA4/Hw/vvvM3LkSFwuFxD0Ttq7dy/p6ekAZGRkkJubSyAQoKioiPj4eKxWK7NmzaKwsJDa2lpqa2spLCxk1qxZWK1WDAYDRUVFBAIBcnNzueKKK8J4ysogJUEnxEGGnFDYNbEYtZwWG9KCHtDpspLL5WL9+vX4/X4CgQBXXnklP/nJT7jpppuorq4mEAgwZswYHn74YQDmzJnDvn37yMzMJDY2li1btgBgNptZtWoV2dnZAKxevRqz2QzAxo0beeCBB/B4PMyePTvkDTWQSUuM4+Dxanz+FjRqEY4iF5QoDlUNXvwtgdDsRyDoCp2Kw5gxY8jNzW3X/sILL3R4vCRJPPTQQx3+X3Z2dkgczmXChAns3r27s6EMKIaYY/nk22ocdU0MMcdGejiCVtweH25PcygHltxJNurwB6C60Utya9xDtNDmhZWg79LWqaCbiFdSmZI2KCgIYmlJfihp9mBti5KOQnfWEmc9KQk6EQsUJoQ4yJQhiUFXNSU9iKIdW0Iw+O1EjXKuSdtswVUXheLgqGNCqinSw4hahDjIFFuCHrVKEjMHGdE2m1NSIFzbzOF0Q3RtStc3+ThefZZxqQmRHkrUIsRBpqhVMFh4LMkKg1ZDYmyMomZziXFaVBJR5856zFVPAJhgFzOHcCHEQcakJugV9SAaCNjNyromGpVEkiH63FmPOusBGC9mDmFDiIOMSTXpxcxBZthNesUFwiUbtFE3cyhx1pESryMpyjyw5IQQBxljN+mpPttMoyj8Ixvs5lgcdU34/Mopam816qIubXeJs56xKcZIDyOqEeIgY9pSQ4vZQ+SRJAmVFBTslgA46pSzTJNsjK5a0m2b0WNTupYjSNAzRPSIjLG3isOJWg+jLYYIj2Zgs2rmcKyD4jhTG1xSqqg5q5jgRItRS63HR5OvBZ1G+e+Dx1zB/YYxYuYQVpR/p0QxdlNrIJxbzBwizfThiUwZmhgSBCVtSocqwkWJO+sXjjoAsawUZoQ4yBhTrIa4GLXiNkCjGYtRS4xaUlQgXKiWdJQEwh111mOL15EYJyKjw4kQBxkjSZLwWJIZKkkiNUFPhYKuSdvMIVpSaJQ46xhrE/sN4UaIg8yxm/RiWUlmDDHHKmo2Z2nNPRQNm9J1Hh/lNR6xpNQPCHGQOakmPSdqPB1WzBNEBrspGAinlGuSoNeg06g4FQXurEddYr+hvxDiIHNSTXo8vhaqzzZHeiiCVuxmPQ1eP7VnfZEeSpeQJIlkQ3S4s7ZFRo8Rbqxhp1NxaGpqIjs7m2uuuYb58+fz29/+FoDy8nKWLl1KVlYWa9euxesNvpV4vV7Wrl1LZmYmS5cupaKiImTrueeeIzMzk7lz57J///5Qe0FBAXPnziUzM5Nt27b19TkqGruIdZAdbV5kJ2oVtLRk1EbFzOELRz2pCTrMscqop6FkOhUHrVbLjh07+Mtf/kJubi779++nqKiIxx9/nOXLl7Nnzx4SEhLYtWsXADt37iQhIYG//e1vLF++nMcffxyA0tJS8vLyyMvLY/v27Tz88MP4/X78fj+bNm1i+/bt5OXlsXv3bkpLS8N71gqiLRBOSd4x0Y7d/M/4E6VgMepCxXGUzFFXnZg19BOdioMkSRgMwQAsn8+Hz+dDkiQ+/PBD5s6dC8DixYvJz88H4J133mHx4sUAzJ07lw8++IBAIEB+fj7z589Hq9WSlpbGsGHDKC4upri4mGHDhpGWloZWq2X+/PkhW4JzoqTFprRsGGJSojhocdU1KWafpCPcnmYqxGZ0v9GlPQe/38/ChQv54Q9/yA9/+EPS0tJISEhAowkGWNtsNpxOJwBOp5PBgwcDoNFoiI+Pp7q6GqfTic1mC9lMSUnB6XSet10QJDZGzaA4ZaWJjnb0MWqSDFpF1XWwGHV4fC00KDhPV9t+g0ib0T90KX2GWq3mzTffxO12s3r1ar7++ut2x0hSsHh5R28mkiSdt72lpX0CszZbFx6ThNkc15Xhd9BX1eO+4bZnrA4+cFSqf9ocmhSHq8Hbq8+Q8zmHw144bJ5rb1hSHM6GZtlcE2NrgJtK1fHvYpg1+LZ9VlIxpBufKafr/E2xA4DpF1kwtwbAKe2+kaO989Gt3EoJCQlMnz6doqIi3G43Pp8PjUaDw+HAarUCwVlEZWUlNpsNn89HXV0dZrMZm82Gw+EI2XI6naE+52u/EH5/gJqaxu4MP4TZHNfjvuG2V9/qUdLS0hKymWLQcqiyrlefIedzDoe9cNg8157NqOVgea1srkl9fXBm2dLS8e/C0LpG8HVlLRZt150U5XSdi749E3TQ8Pqo8frCMr5w2JSbPYulazOvTu+SM2fO4Ha7AfB4PLz//vuMGjWK6dOn8/bbbwOQk5NDRkYGABkZGeTk5ADw9ttvc/nllyNJEhkZGeTl5eH1eikvL6esrIyJEycyYcIEysrKKC8vx+v1kpeXF7IlCGI36XG6PfhalLteHG3YTXqcdU14fcpI3W0xtEZJK9id9QuRprtf6XTm4HK5WL9+PX6/n0AgwJVXXslPfvITRo8ezd13381TTz3F2LFjWbp0KQDZ2dncd999ZGZmYjKZePLJJwFIT09n3rx5XHXVVajVajZs2IBarQZgw4YN3Hrrrfj9fq699lrS09PDeMrKI9Wkxx8AZ50n5EYpiCx2UywBoNLtYdig8E/xe0sov5JC3VlrzjZzstbDtRMHR3ooA4ZOxWHMmDHk5ua2a09LSwu5r56LTqcLxUJ8n5UrV7Jy5cp27XPmzGHOnDldGe+A5Ny6DkIc5MGQc9xZlSAO+hg18TqNYov+HHOKNN39jYiQVgCh1N3CY0k2tAUnVigo/iTZqMWl0GWlL5zBtBlCHPoPIQ4KwBqvQy0py68+2kkyaNFpVIqKkrYatYoNhDvqrGeIWU+CXkRG9xdCHBSARiWRkiBSd8sJSZKCGXMVdE2SjTpcCipvei4lzjoR39DPCHFQCEp7EA0E7Ca9opaVrEYtVQ1eWhQWJV3T2Eylu0l4KvUzQhwUQmprmmiBfLCbYzlRe1YxKSmSDTr8ATjTqKwMvyWhNN1i5tCfCHFQCHaTnjONzZxtVm76g2hjiEnP2WblpFO3trqznlbYpvRR4akUEYQ4KASRult+tGVnVcrSUlusg0th7qxfOOoYmhiLUdethA6CXiLEQSGkKjATaLSjtLoOya21pJU4cxhjFbOG/kaIg0JIFTMH2aG0WhtJBi0SyoqSrm704qhrYqxN7Df0N0IcFEJibAyxMSohDjJCp1FhNWqpUMg10agkBhmUVRGuJJSmW8wc+hshDgpBkiThsSRD7CY9JxVU18Fq1HKqQTnLSiWtkdEXi2WlfkeIg4JIFYFwsiPozqqca5KssJnDUWe92IyOEEIcFITdHMvJWo9i/OoHAnaTHle9F49CXIyt8TpFicMXjjqxpBQhhDgoiFSTnsZmPzUK8asfCLS5s1a6lbFUk2zQUnO2WRF1KKoavLjqvSL4LUIIcVAQqQnCY0luDFGYO6u1zZ1VAQn4QjWjbWLmEAmEOCgIu1nEOsgNpQXCJYeK/sh/plPirENCbEZHik7FobKykmXLljFv3jzmz5/Pjh07AHjmmWf40Y9+xMKFC1m4cCH79u0L9XnuuefIzMxk7ty57N+/P9ReUFDA3LlzyczMZNu2baH28vJyli5dSlZWFmvXrsXrlf9bTSRomzkIcZAPbS7Gkb4mbk+wprJKuvBxSqoIV+KsZ9igWAxasRkdCTr91tVqNevXr2fcuHHU19dz7bXXMnPmTACWL1/OLbfc8p3jS0tLycvLIy8vD6fTyYoVK0K1pjdt2sTzzz9PSkoK2dnZZGRkMHr0aB5//HGWL1/O/Pnz2bBhA7t27eKGG24Iw+kqmzitmsTYGLGsJCMkSWKIOZYTEXRnDQQCbP/gOIPiYpgyNBHf2fM/+C2ty0qnFLGsVMelaeZID2PA0unMwWq1Mm7cOACMRiMjR47E6XSe9/j8/Hzmz5+PVqslLS2NYcOGUVxcTHFxMcOGDSMtLQ2tVsv8+fPJz88nEAjw4YcfMnfuXAAWL15Mfn5+H51e9GE3C3dWuWE36SMaCPf20VMcqnSzetaITl0+TXoNWrXEKZnXdThd34Sr3iuS7UWQbs3XKioqKCkpYdKkSRw8eJCXXnqJ3Nxcxo8fz/r16zGZTDidTiZNmhTqk5KSEhITm832nfbi4mKqq6tJSEhAo9GEjrmQ+LShVkuYzT2r3atWq3rcN9z2jNXBN1CVqmObw5INFFfUdvvz5HzO4bAXDpvnszfSGs8HZdWYTLFIUifrOn08vkavj2cLyxiXmsAvZo7okk1rgp5ar79Lnx2p63ywdTP6stGWCx6v5PtGLvbOR5fFoaGhgTVr1vCrX/0Ko9HI9ddfz6pVq5AkiaeffprHHnuMRx99tEMffEmSaGlp7zp3vh9SV35gfn+AmprGrg7/O5jNcT3uG2579a0bhS0tLR3atLQuK1WdaUDd2QJzmMaoBHvhsHk+e8mxGpp8LXx1oiaU3K6/xvf797/F4fawad7FuN1nu2QzKTaGE9WNXfrsSF3nT7+qQgJSYzUXPF7J902k7FksXXMN7pK3UnNzM2vWrGHBggVkZWUBkJycjFqtRqVSsXTpUg4dOgQE3/wdDkeor9PpxGq1nrc9MTERt9uNzxfcUHM4HFit1q6d5QDEbtLjbwkotlB8NNKWTr2/PZYcbg87Pi7npxdZmDLE1OV+FqP8A+G+cNYxPCmOOK060kMZsHQqDoFAgAcffJCRI0eyYsWKULvL5Qr9fe/evaSnpwOQkZFBXl4eXq+X8vJyysrKmDhxIhMmTKCsrIzy8nK8Xi95eXlkZGQgSRLTp08PbVrn5OSQkZHR1+cZNSgtE+hAwB6hdOpb939DIBDgX2eP6FY/i1HLqfomWUfaH3XWi8joCNPpstKnn37Km2++yUUXXcTChQsBWLduHbt37+bo0aMA2O12Nm3aBEB6ejrz5s3jqquuQq1Ws2HDBtTqoPpv2LCBW2+9Fb/fz7XXXhsSlPvuu4+7776bp556irFjx7J06dKwnGw0IFJ3y49Ukx6J/g2EKz7p5u2jp/iX6Wmhe6KrWIxazja30OD1yzJn0an6Jk43iMjoSNPpnTF16lSOHTvWrn3OnDnn7bNy5UpWrlzZYZ+O+qWlpbFr167OhiIAbPE61BKccAtxkAsxahUp8bp+W1ZqCQR44u9fkWzQcvNlQ7vd3xIq+uOVpTiINN3yQERIKwxN64Mokn71gvbYzf2XTv2tEhdHHHXc9aMRPVqT/2e5UHnuW5U46lBJcJGIjI4oQhwUSKpJz8laef6wBypDTP2TurvR62fr/m/4gS2eeT/omeOGReb5lY666hk+KI7YGLEZHUmEOCgQuymWk2JZSVbYzXqqGrycDXPq7h0fl3Oq3su6H49E1Y2YinMJzRxkGAgXCASCabpFWdCII8RBgaSagg8ipdQQGAj0h8dSpdvDS59UMHeMhUn2rruufp/YGDVGnVqWM4dT9V7ONDYzViwpRRwhDgok5LEkZg+ywW5uTd0dxk3pZwq+AeCuH3XPdbUjLAYdLhnGOrSVBRUzh8gjxEGB2IU7q+z458whPI4CRRW1/O3YKZZNHYItoXuuqx1hMWo5LcMN6RJnfXAz2mKI9FAGPEIcFIgIhJMfJr0Gg1YdlmvSEgjwxLtfYTVquemytD6xGQyEk+fMYWSSAb3YjI44QhwUyKC4GPQalVhWkhGh1N1hmM3lHXFS4qznrtkj+syDJ9mo41SDlxYZRUkHAgGOOutFJlaZIMRBgUiS1OrOKsRBTthNeir6OP6koTXr6oTB8Vw5pu9yjlmNWvwtAVnVI3fWNQU3o0VktCwQ4qBQUk39F3Ql6Bp2k56Tbk+fvo3/8aNyqhq8rPvJqG6lA++Mtuyxp+rks7R0VERGywohDgrF3jpzkHPytIHGELOeZn+gz9byT9Se5eVPK5g31sr4wQl9YrMNa1u50Ab5bEqXOOtQS5AuNqNlgRAHhZJq0tPg9VPbWjtYEHnspqA7a18tLT1T8A0qSWJ1H7iufp9kQ1sKDfnMHEqc9YxMFpvRckGIg0KJVJpowfmxm/vumnxaXkP+P05z02VppMR3vYBQV0k2aJFANu6sgUCAEpGmW1YIcVAoInW3/AhlzO3lNfG3BLOupsTrWDZ1SB+N7rto1CoS42JkM3Nw1jVRc1ZsRssJIQ4KRYiD/NCoVaQk6HudMXf3EQf/ONXAmtkjwrrEYjHqOC0TcfhCbEbLjk7FobKykmXLljFv3jzmz5/Pjh07AKipqWHFihVkZWWxYsUKamtrgeD0cPPmzWRmZrJgwQKOHDkSspWTk0NWVhZZWVnk5OSE2g8fPsyCBQvIzMxk8+bNYpO1Cxi0GsyxMf1aYEYLdAGTAAAgAElEQVTQOfZeepHVN/n478IyJqYmkHmxpQ9H1p62inByoMRRh1olMdoixEEudCoOarWa9evX83//93/8+c9/5uWXX6a0tJRt27YxY8YM9uzZw4wZM9i2bRsABQUFlJWVsWfPHn7zm9+wceNGICgmW7du5bXXXmPnzp1s3bo1JCgbN25k06ZN7Nmzh7KyMgoKCsJ3xlGEiHWQH0PM+l5FST//0XHONDb3uetqR8gpSvqos55RSXHoNGIxQy50eiWsVivjxo0DwGg0MnLkSJxOJ/n5+SxatAiARYsWsXfvXoBQuyRJTJ48GbfbjcvlorCwkJkzZ2I2mzGZTMycOZP9+/fjcrmor69nypQpSJLEokWLyM/PD+MpRw92IQ6yw26KpfpsMw3e7nuRVdSc5ZWDJ5g/LoVx/ZB4zmLUUX22mWZ/S9g/60IEN6NFmm650S2ZrqiooKSkhEmTJlFVVYXVGozYtFqtnDlzBgCn04nNZgv1sdlsOJ3Odu0pKSkdtrcdL+icVJOeSncT/haxDCcX7L3Ie/X0vq/RqCRWzxrex6PqGEurO2ukU3dXupuo9fjEfoPM6HIB2YaGBtasWcOvfvUrjMbzX8SO9gskSep2e2eo1RJmc1ynx3XcV9XjvuG2Z6wO7iGoVJ3bHG1LwNcSoEmlIrU1ZXR/jFEJ9sJhsyv2xqaZAajxBTo99lx7H35dxbulVaz7aTrpQxLDOsY2RtiCgXUezv9b6o/v8IMKNwCXjbZ0+7Oi5b6JpL3z0SVxaG5uZs2aNSxYsICsrCwAkpKScLlcWK1WXC4XgwYNAoJv/g6HI9TX4XBgtVqx2WwcOHAg1O50OrnsssvOe3xn+P0Bamoau3aW38Nsjutx33Dbq2/dIGxpaenUZqI2OPErKa8mjgvPHuR8zuGwFw6bXbGXoAq+2Bw7UcNlqRdeJmmz528JsGn3FwxO0LH4B9Zejbk75xzbes987XAzIqHjWIr++A4//aYKjUoiRafu9mdFy33Tn/Yslq4t33W6rBQIBHjwwQcZOXIkK1asCLVnZGSQm5sLQG5uLldcccV32gOBAEVFRcTHx2O1Wpk1axaFhYXU1tZSW1tLYWEhs2bNwmq1YjAYKCoqIhAIfMeW4MKIQDj5Ea/XkKDXdOuavHmoki9PNbBm9sh+jQ62tuVXivCmdImjjtHJBrRiM1pWdDpz+PTTT3nzzTe56KKLWLhwIQDr1q3j9ttvZ+3atezatYvBgwfz9NNPAzBnzhz27dtHZmYmsbGxbNmyBQCz2cyqVavIzs4GYPXq1ZjNwSn4xo0beeCBB/B4PMyePZvZs2eH5WSjDVu8DpUkYh3kRnfcWeubfPzuvW+ZYk/giouSwzyy72KK1aBRSREVh0AgwFFXPRnp/Xvugs7pVBymTp3KsWPHOvy/tpiHc5EkiYceeqjD47Ozs0PicC4TJkxg9+7dnQ1Flpyub+LTynompxhQq8Lrevh9NGoVKfE6IQ4yw26K5ZirrkvHbv/gOLVnm1n3k/Fhd139PpIkRTzW4UStB7fHJzyVZIiYx/WSnUUnufPlg6x4+TOOVLr7/fNF6m75YTfrOdkFL7Kyqgb+/NkJFoxPYUyE0kZYWov+RAqRplu+CHHoJc3+ACopuG674uUiHtnzj34toJKaIGId5MYQkx5/SwBXJ2/kj711DJ1GxcpZfZ91tatYjFpO1UVu5lDirCNGLTEqSaTplhtCHPoArUbFzhVTuf5SO3897CD7fz4mp7iyX0ow2s16Tjd48TT7w/5Zgq7Rlp31Qqm7Pz5eTf5RFyumDw2lz44EFqMuonEOJc56sRktU8QV6SOMOg13/3gUL950KSOTDWz525f8y8tFlDi7tvbcU9oS8FW65ZEjR/DPug4XCoQ7WB5MHfPzS+z9MqbzYTFoafD6exTR3VvaakaLTKzyRIhDHzM62cBzP5vIpqsuptLt4eYXP+OxvV9SG6alptQEkZ1VbqTE61CrpC7tBUU6l5AlvrUiXAQ8lk7Ueqhr8jFG7DfIEiEOYUCSJOaNTeH1f5nGdZfYySmuJPv5T/jLIUefLzXZWyOjxaa0fFCrJFITdFT0IgFff2ExtMU69P/M8wtHcFb9AzFzkCVCHHpJvdeHp7njxGVGnYZ7fjKKP/3iEoYlxvKbPf/g1lc+55irvs8+PykuBp1GJVJ3ywy7KVYR1yTZGLmZw1FnPTFqiZHJ4U8FIeg+Qhx6SU6xo9NjLrIa2fbzSTx05UVU1JzlphcP8vg7pdT1Qf1nSZKEx5IMsZuVcU0sreIQiaI/Jc460i1GYtTiMSRHxFXpJ1SSxNXjbLz+L9PInpTKzqKTZD//MXlHnL0ubqSUB9FAwm7SU+vx9ckLQDgxaDUYtOpO3W77mpbWyGgR3yBfhDj0M/F6DfddMZoXbrwEu0nPxreOcfufP+fLUz1fakpNCAbCiQp68uGfe0HyX1qyGLX97s5aUeOhvskvxEHGCHGIEBenGNl+/WR+nXURZWfOsuxPB3ni719R39T9N81Uk54Grx+3zN9SBxJDFJQUMdmow1XXv+JwtNXFW7ixypcu13OIFt7/5gxqrZvLUuP7PZfN91FJEtdMsDFndBK/e6+MVw+e4PXPT3bbTlt21pNuD6bYmL4epqAHtMWfKMFjyWrU8llFbb9+5heOerRqiZFJYjNargy4mcNvC77mrleL+NfXD3G8Wh5TflNsDOt/ms4fb5wSKrCeoO/6Qz61F9XHBOHBqNNgjo1RxLJSskHHqXpvv0T0t1HirOMiqxGN2IyWLQPuyrQEgg/Tw5V1XL/jE37/wbd4fZGtodvGD2zxPH/DZHaumMrYwQld7tcmDmJTWl4MMesVIdhWoxZfSyBsgZrfpyUQ4JirnjFWsd8gZwacOABMHGJi14qp/Hh0Mtve/5brX/iUA99WR3pYQHCpafig7k21jToNJr2Gk275P4gGEnaTngoFCLaln2MdjlefpcHrF2m6Zc6AFAcIbsI9cvVYnrl2PC2BAKt3HeLf8kqoinCx9Z6SalLGW+pAwm7S43R78PnlMTM9H8n9XBFOrmm6/S0BVu8s5u/HXJEeiizoVBweeOABZsyYwdVXXx1qe+aZZ/jRj37EwoULWbhwIfv27Qv933PPPUdmZiZz585l//79ofaCggLmzp1LZmYm27ZtC7WXl5ezdOlSsrKyWLt2LV5v/z6cLx8+iFduupRbLx/KO1+eJvv5j3n985P9uv7aF9hNejFzkBl2cyz+ADgimBK7K1hDM4f+GWeJsw6dRsUImaXp9vj8HDhew+b/PSp7Qe8POhWHJUuWsH379nbty5cv58033+TNN99kzpw5AJSWlpKXl0deXh7bt2/n4Ycfxu/34/f72bRpE9u3bycvL4/du3dTWloKwOOPP87y5cvZs2cPCQkJ7Nq1q49PsXP0MWrumDmcl2+6lDEp8Ty2t5RbXinq0zQX4SbVFEul29NpgRlB/2FXiKNAkqF/l5VKnPVcZDGg6efKiV3l+JlG/nrEGelhRJxOxWHatGmYTKYuGcvPz2f+/PlotVrS0tIYNmwYxcXFFBcXM2zYMNLS0tBqtcyfP5/8/HwCgQAffvghc+fOBWDx4sXk5+f37ox6wfBBcfx39gQ2XXUxJ2s93PTiQZ5896uIpDPuLnaTjmZ/IKIlHwXfJSQOMvdYilGrGBQXw6mG8N87LS0BjikgTff2D76lSSaOKpGix3sOL730EgsWLOCBBx6gtjboI+10OrHZbKFjUlJScDqd522vrq4mISEBjSYYbmGz2XA6I6vYbRlVd66YyuKJg3nl0xP87PlPeOfL0x1GIC+bOgR9TOS3blLPiXUQyANrvI4YdddSd0eaZIO2X2YO31Q10Njsl3Wa7tnpybjqveQUV0Z6KBGlR0Fw119/PatWrUKSJJ5++mkee+wxHn300Q4fnpIk0dLSXoHPF4DW1cA0tVrCbO5+AI1apUKSOu9rBh7LnsR104ex4S9H+P/+8gU/vsjChqvHkpb4z7661niEnozlguNUq7plc2xa8LuvaQ502K+79vp6fP1tLxw2e2IvLTEOZ0Nzu356mdw3baQmxuGqa2rXt6+/w/2tD9zp6ZY+sduX49O0ZieYOTqZJl8LfzxQzk2zRhCn7V2ssBzuw57Qo7NOTk4O/X3p0qXceeedQPDN3+H4Z5ZSp9OJ1WoF6LA9MTERt9uNz+dDo9HgcDhCx3eG3x+gpqax22P3t7QQCHS974h4Lc9fP5nXPjvB/3uvjHm/LeTWy4dy49QhxKhVNHmCvuE9GcuFMJvjumUzjgAS8OXJWmpGJPbaXl+Pr7/thcNmT+zZ4rWUnW5o188jk/sm1E+nprjibLu+ff0dFlfUoNOoGBSj6hO7fTm+tuXjQCDAbdPTuPXVz/n9u19x82VpvbIrh/vwXCyWri3p9Wg9xOX6p6vX3r17SU9PByAjI4O8vDy8Xi/l5eWUlZUxceJEJkyYQFlZGeXl5Xi9XvLy8sjIyECSJKZPn87bb78NQE5ODhkZGT0ZUljRqCRuuHQIry2fyg9HDOLZwjJu/NPBfk85cCFi1Cqs8TqxrCQzhphiqag5K/ukiBajljONzWH30jl80s3FVqNsN6PbmGQ38cMRibzwcXmP8p1FA53OHNatW8eBAweorq5m9uzZ/Ou//isHDhzg6NGjANjtdjZt2gRAeno68+bN46qrrkKtVrNhwwbUajUAGzZs4NZbb8Xv93PttdeGBOW+++7j7rvv5qmnnmLs2LEsXbo0XOfaa2wJev7jmh+w/6sq/vOdUm7/8+chTw85YDeJ1N1yw24OJkWs9fgwyzjvlaU11uF0gxdba+nZvsbfEuCLSjcLxqWExX5fc+fM4dz04me89EkFd8wcHunh9DudisMTTzzRru1CD/CVK1eycuXKdu1z5swJubyeS1paWkTcV3vDj0YlMW2ome0fHufFTyqI06ojPSQguCn9kUwivQVB7OdkZ5W3OPzTnTVc4vBtdSONXr/sPZXaGJsSz0/Sk3nl4Amum2LHHCff6xcOIu9mo1D0MWru+tEIXr3pUp678ZJIDwcIisOpeu+Ad8GTE6G6DjXydmdtmzmcCmOGgLbIaDl7Kn2fO344jEavnxc+Lo/0UPodIQ69ZHhSHNOGD4r0MIB/vqVWin0H2WBXSF2H0MwhjNHcJc56YmPU3c4dFklGJRu4cqyV14pOcloGMUR1Hh8Hys70y2cNOHG4adoQfja1d94HckUpD6KBRGyMmiSDVvZR0ubYGDQqKawzB7enmSSjFrXMN6O/z20zhuHzt/D8R5GfPfz1iIObn/+Y5n5I7zHgxOHqcTZ+NDq58wMViFJTdwcCgX652SOF3aSXfZS0SpJaA+Ei/3YsN9ISY1kw3sYbxZURn5V7fS34WgL0R5acAScO0UySQYtOo1KcODxbWMYPNu7BEaXLYXaTXhEV4SxGXb/lV1Iat1w+FEmCP3xwPGJjONPo5f2yajQqif6YfAlxiCJUksTgBJ3ilpWKTwTjRaI1RmOIWY+zrkn2syOLUctpIQ4dYkvQs2TiYHYfcUSkguT735zh+h2fcqTSzYarxxLTDxX0hDhEGaki1kF22E2xBIBKt7yXbCxGLS6xrHRelk8fSoxaxbb3y/rtM5t8LTz+Tim/fOMwiXEx7LjxEq6fNrRfPluIQ5RhN8UKcZAZbY4CFQpwZ23w+mn0+iM9FFmSbNDysyl29hw9RenphrB/XumpBm5+6SB//uwk101JZceNlzDa0n81MIQ4RBmpJj11TT7cnv6pByzonCFmZXiRWfq56I8SuWnaEOK0ap57ryxsnxEIBHj14Alufukg1Y3NPLVkPPdmjEan6d/HtRCHKEOpHkvRTJujgNzdWdvE4bRCS+X2B6bYGG6cOoR3S6v4wlHX5/arGrz88o3D/Nffv+KyYYm8cvOlzBwRmTgqIQ5Rhj1BiIPckCQpWONb5u6sFkMwSlrsO1yY6y+xY9Jr+F0fzx4Kv67i+h2fcrCilvsyRvPEonEMiotc7jYhDlGGXSFLGAONISa97K+JJb515iA8li6IUafh5svS+LCsuk8yM3ua/fxHfil35xwh2ahlx41T+NmU1C7XtgkXQhyiDKNOQ4JeI/sH0UDDbo7lRI1H1qm7DVoNcTFqEevQBZZOTiXJoOV3hd/06pp+eaqem176jJ1FJ7nhUjvP3zCFUcn9t+l8IYQ4RCGpCcKdVW7YTXoam/1Un5W3o0CyUURJdwV9jJp/mZ7GZyfcPcqE3BII8PKnFdz80me4PT6euXY8d/94VL9vOl8I+YxE0GfYzfJfwhhohDyWZL4pbTX2Ty3paGDRhMHY4nX87r1vuzV7OF3fxC9fP8yT737NjOGDeOWmS7hcJsk7z6VTcXjggQeYMWMGV199daitpqaGFStWkJWVxYoVK6itDa67BQIBNm/eTGZmJgsWLODIkSOhPjk5OWRlZZGVlUVOTk6o/fDhwyxYsIDMzEw2b94s62m3UkhN0FPp9tAivkvZYDe1pu6WuWgnG3Vi5tBFtBoVt84YyheOOgq+qupSn32lVVz/wkE+O1HL+p+O5vGFPyAxgpvOF6JTcViyZAnbt2//Ttu2bduYMWMGe/bsYcaMGWzbtg2AgoICysrK2LNnD7/5zW/YuHEjEBSTrVu38tprr7Fz5062bt0aEpSNGzeyadMm9uzZQ1lZGQUFBX18igOPVJOeZn9AbCzKiMEJQU8guQfCWY1aTjV4xUtaF5k/zsbQxFj+33vfXvBlzNPs57G9X3Lvm0ewGrX86ReXcO2kyG86X4hOxWHatGmYTKbvtOXn57No0SIAFi1axN69e7/TLkkSkydPxu1243K5KCwsZObMmZjNZkwmEzNnzmT//v24XC7q6+uZMmUKkiSxaNEi8vPzw3CaAwuleSyZWiukbf/geNhrGEcKfYwaq1Er+2uSbNTR7A9Qe3Zg1k3uLhqVxO0zhlF6uoG9x051eMwXlW5uevEzXv+8kl9MHcLzN0xhRJL8a1r0aM+hqqoKq9UKgNVq5cyZYPEJp9OJzWYLHWez2XA6ne3aU1JSOmxvO17QO1IVFuvwo5FJAHx8vIY1bxymzhOdDya7AtxZrW1R0g1iaamrZI6xMCo5jufe/xbf93Jpv13iIvu5D6j3+tiaPYFfzhmJVkabzhei0xrS3aGjqagkSd1u7wpqtYTZ3DP1VatVPe7bH/Z6azPWqEeS4EyTP2RDzuccZwg+kNb8ZDT/ve8rbn+tmO03XRoqsdlT5HbOw61G3v+qCrM5Dr0+OFuS030DMMKWAEBjIPj76svvUBujQaJvz7kvx6dpCr6UqKTuP1vuybyYVa98xrtl1WRfMiTU/uYXTuzmWF67/fI+21sIx/OmI3okDklJSbhcLqxWKy6Xi0GDgjvtNpsNh8MROs7hcGC1WrHZbBw4cCDU7nQ6ueyyy857fFfw+wPU1DT2ZPiYzXE97tsf9vrCpsWg5SunO2RDzufc2BjcG/np6EGMSY7l/r98wZLfvc8Ti8czztbzYvRyO2drbAxOdxPO0/V4WnNfye2+CeaPhTKnm0lWQ59+h95mHwH69pz7cnwN3qA4tAS6/2yZOtjI2BQjv83/ktlDzaHZga/Zjy1Bj+T1UePtmxlxr58Nlq79pno0v8nIyCA3NxeA3Nxcrrjiiu+0BwIBioqKiI+Px2q1MmvWLAoLC6mtraW2tpbCwkJmzZqF1WrFYDBQVFREIBD4ji1B77ArNHX3tKGJ/M/1U9BrVNzx589598vTkR5Sn9G2F1Qp4+uSFNeWfE84M3QHSZJYOWs4le4mcg85Ou+gADoVh3Xr1vHzn/+cb775htmzZ7Nz505uv/123nvvPbKysnjvvfe4/fbbAZgzZw5paWlkZmby61//moceeggAs9nMqlWryM7OJjs7m9WrV2M2m4Ggt9K//du/kZmZydChQ5k9e3YYT3fgkKqA9e3zMSIpjv+5YQqjkw3c/5cvePnTiqjwnmlzZ62QcY4lrUaFOTZGiEMPuHxYIlPsCfzPR8fxNCs/7Xmny0pPPPFEh+07duxo1yZJUkgQvk+bMHyfCRMmsHv37s6GIegmdlMs/1vvwutrUcwG2LkkGbT8v59N5KH/O8aT735NRY2HdT8ZhUZhxenPRSmBcBYRJd0jJEnizlnDuePPxewsOsmyaWmRHlKvUN5TQ9AlUk361upj8n4QXQh9jJpHF4zlF1OHsLPoJPfmHgmtCyuRxNgYYmNUsp/RWUSUdI+5ZIiZy4clsuNAuaLvVRDiELWE6jooWBwg6DnyyzkjWf/T0XxYdobbX/0cV50y32olScJuipV9IJzFqOOUqOnQY+6cNZxaj49XPj0R6aH0CiEOUUpbaUq5L2F0lWsnpfLE4vGcqPWw4uXP+IerPtJD6hFDFJD3ymLQcqbBG7UBieFmnC2eOaOSePGTCmoVHLMjxCFKSTZq0aolRXosnY8fjhjE738+CYDbXv2c974+E+ERdZ82RwE5b69b4nUEgC1/+5IHcw+z56iLM41iJtEd7pw5nEavn6+r+tZVuT/p0yA4gXxQSRK2BL3il5W+T7rFyB9vnMLdOUdYl3uY+zJGkz05NdLD6jJ2UyxNvhaqZLxsY2kNSvzrkWC2gtda29MtBqYNNXPZsESm2E3EadURGqH8GW0xkDXGwttHTyk2x5kQhyjGbtJHzbLSuViMOrZdN4kH80r49/xSKmo8rJkzApWMk5i1MUQBea/aakkD/HxaGlemJ3HgeA0Hjtews+gkL396ArVKYuLgeKYNTeSyYWbG2eLRqMVCxLncNmMYbx89RekpZS6BCnGIYlJNeo6EoQi6HIjTqnl84Tie+PtXvPRpBSdqz/Kbq8agj5H322xoL0jW4qAL/V2jkhg3OIFxgxNYMX0onmY/n590c+DbGj4+Xs3vP/iWbR98S1yMmkvSTMGZxdBERiXHyTrjaH8wbFAca2aPwNIPqS7CgRCHKMZu0uP2+Kjz+DBHejDnIRAIUNvD6mhqlcR9V4xmSGIsT/79K+58rZj/WjSOJIM88+MDDE7QIyHvpIiJcTGoVRL+lvY7I/oYNdOHJTJ9WCIwgtqzzXxaUcuBb6v5+HgNha37QIPiYkJCcdkwM7bWZJADjWXT0sKSXqc/EOIQxbS9pZ6s9ZDWmlAt0gQCAU7UevjkeA2flNfw8fEazjQ2E6OWiOvhW//1l9hJTdDxb3lHWfHyZzy1ZDwjk+RRh/f7aDUqUuJ1OGTsjquSJJINWpxdGKMpNoaM9GQy0pMBcLg9HDgevK4Hvq3m7aPBNNZpZj3lUbjEGc0IcYhi2mIdTkR4U9pV18Qn5TUhQah0Bx86SQYtlw1LZFqamcyJg4ntRYqMOaOTee66SazLPcItrxTx7wt+QJZMp/N2s17W4gDBfYeuiMP3sSXouWa8jWvG2wgEAnxd1RgUi2+rhTgoDCEOUUyqKTJ1HWoam/m0Ivj2+MnxGr6tDgZ9mfQaLk0zs2xaGtPSzAwbFBtalzabYns99f6BLZ7nb5jM3TmHWfPGYV63GLHHxfT6fPoau0nPp+W1kR7GBQnuO/Ruv0qSJEYlGxiVbOD6S+xM+y9R5VFJCHGIYhL0McTrNDy972vyvzyNViURp1UTG6MmTqsmLkZNrFaNofXPjv+twhCjIVarRquWOtxkrG/y8VlFbWiZ6MtTDQDExaiZMsTEoomDmZZmJt1qCLtH0eAEPdt/PpkXP6kgyaiDFvkFcg3pZZ2K/sAi430bQf8gxCHKSTXpOeaqp7rRi9Wo41S9l7PNfhq9/tCfXV3MUUsQp9Wg06hINuq4fJiZT8prKHHU4Q+AVi0x0W5i5czhTB1q5gcpxoi4Nxp1Gu6cORxzgl6WG4Fte0Fyps2dtdHbd9lFc26ZRpMk3F2VghCHKKdNHOaNH8wd09tniWwJBGjytYTEosHr56zXT2Nzx/9u9Pr582cnOd3g5ctT9YyzxXPz9KFMSzMzITUBnQIzwPY3yhCHoDvrqT7cGxlijlWs585ARIhDlNP2IDpfPQSVJBEbE1xq6irLpqXhavIzMkGLQStuoe7S2/Kn/UFy68zBGWUR9oKuI37ZUU7bpnRfvgGmxOu4OE28AfYUk17+Pztr68xBqRlwBb2nV3dpRkYGBoMBlUqFWq3mjTfeoKamhrvvvpsTJ05gt9t56qmnMJlMBAIBHnnkEfbt24der+exxx5j3LhxAOTk5PC73/0OgJUrV7J48eLen5kA+Kc4yD1N9EBCCZHDbXsONT0MUBQon14vEO/YsYM333yTN954A4Bt27YxY8YM9uzZw4wZM9i2bRsABQUFlJWVsWfPHn7zm9+wceNGAGpqati6dSuvvfYaO3fuZOvWrdTWytvNT0m0LSuVnxHiIOg6htakegkKmOUIwkOf7x7m5+ezaNEiABYtWsTevXu/0y5JEpMnT8btduNyuSgsLGTmzJmYzWZMJhMzZ85k//79fT2sAcvg1rQFZ6Ogpm00kZqg6/ygCCJJEluvnUDuqh9Geij9RlyMmlsuH0rGxdZID0UW9Pq14JZbbkGSJK677jquu+46qqqqsFqDX67VauXMmWCuFafTic1mC/Wz2Ww4nc527SkpKTidzt4OS9CKTqPi7h+PZM5YW+cHC/qNP944BYdH3oI9fXjigPIukiQp6AI9gM75QvRKHF555RVSUlKoqqpixYoVjBw58rzHduQtI0nSeds7Q62WMPcwPYJarepx3/6w19c2V11xEWq1Cn8fVvYaaN9hX9szm+MY3cfXBOR9zkqwFw6bcrd3PnolDikpKQAkJSWRmZlJcXExSUlJuFwurFYrLpeLQYMGAcGZgsPhCPV1OBxYrVZsNhsHDhwItTudTi677LJOP9vvD/RY3fv6zSAcbxpyH6Pc7YXDptzthcPmQLMXDjKFxxAAABlFSURBVJtys2exxHfpuB7vOTQ2NlJfXx/6+3vvvUd6ejoZGRnk5uYCkJubyxVXXAEQag8EAhQVFREfH4/VamXWrFkUFhZSW1tLbW0thYWFzJo1q6fDEggEAkEf0OOZQ1VVFatXrwbA7/dz9dVXM3v2bCZMmMDatWvZtWsXgwcP5umnnwZgzpw57Nu3j8zMTGJjY9myZQsAZrOZVatWkZ2dDcDq1asxm+VafUAgEAgGBlLgfKGzMqe52S+WlYS9frUpd3vhsDnQ7IXDptzshX1ZSSAQCATRixAHgUAgELRDiINAIBAI2iHEQSAQCATtUOyGtEAgEAjCh5g5CAQCgaAdQhwEAoFA0A4hDgKBQCBohxAHgUAgELRDiINAIBAI2iHEQSAQCATtkK04ZGRkhAoFvfDCC8ybN4977rknwqPqHlOmTAGCachvu+02rr766m7bWL9+PW+99VZfD61DnnnmGf7whz+Exn0+3G43zz77bIfnU1FR0aPz7Ixly5axYMGCPrH185//vE/shJuuXvsLXa/8/PxQqd69e/dSWlra4XEfffQRd9xxx3ntXOi6Pvjgg5SWlvL000/z/vvvt/v/ZcuWcejQoXbthw4dYvPmzef9zJ7idrt56aWXgAt/N51x7jlv3br1gt9PfxCu39b5UESB2Jdffpnf//73pKWl9ai/z+dDown/qfr9ftRqdbv2lJQUHnroIe68886wj6ErnG+cXcXtdvOXv/yFmJiYPhxV57Rl8u0tr776ap/Y6Q7n+87DfW9eccUVobT5e/fu5cc//jGjR4/u08945JFHAPjlL3/ZrX4TJkxgwoQJ3erTlXvX7XbzyiuvcOONN3bL9oWorKzk5MmTfWZPCcgiCG7VqlU4HA6ampq46aabuO6668jIyGDXrl089dRTvPHGG4wYMYJrr72WSy65hC1btuDxeNDr9WzZsqXDCnTLli1jypQpHDx4kIyMDObOncuvfvUrzpw5w6BBg3j00UdJTU1l/fr16HQ6vv76a06ePMmjjz5KTk4ORUVFTJo0CbfbjcPhoLq6GpVKRUJCAseOHePjjz/GYDAwY8YMrFYrcXFxzJs3j127dnH8+HFiY2Opra3lgw8+oK6uLlROddKkSXzxxReMGDGCf//3f2f+/PlcffXVfPTRRzQ3N5ORkcEf/vAHmpubGTt2LKNGjeLIkSM0NzfT3NxMYmIi6enpPProo6xZs4aDBw+SmJhIZmYma9as4T//8z9JTU0N/TCeeeYZDAYD48aNY+vWrVitVkpKSvjf//1fnn/+eX7/+9/jdrux2+2MGzeOcePG8dvf/paLL76Ys2fP0tLSQkxMDH6/n0mTJlFcXIzT6aSurg61Ws0vfvEL1qxZw/r16/n6668ZPHgwH374IbNmzeLbb79Fq9Wi0Wior6+nqqoKi8XC8OHD2bJlCyaTiWXLljFx4kQ++ugj6urqeOSRR5g6dSoej4cHHniA0tJSRo0axYkTJ/jHP/7B559/zv3338/f/vY3fD4fRqORZ555hqlTpzJlyhQ+++wzAN566y3effddHnvsMRYuXBi6L7755hsAbr75Zt566y2MRiM+n4+6ujpefPFFhgwZwrPPPstf//pXBg8eTGJiIuPGjeOWW25h2bJl3H///UyYMIEjR46wdOlSYmNjgWBNE71ej8/nIxAIkJSUxIoVK/jd735HXV0dLS0tDB8+nP/+7/+mqKiIrVu3UlNTQyAQQKfTMXbsWE6dOsWpU6cAmDRpEo2NjaHv+cyZMxiNRgDS09M5ceIEZ8+exeVyUVdXx8iRI7n44ouJjY0lLy+P5uZmFi5cyKWXXkpRURHHjh2juLgYlUqF1Wplx44dvPvuu7z66quo1WoSExPx+/1UVVXhdrv56U9/ysaNG7nmmmu49dZb+eMf/8hXX31FcnIyMTExnD59mpaWFvR6PbW1taSmpnLRRRdRX1/P4cOHaWpqAoIVII1GIz/72c/Ys2cPlZWVWCwWzpw5w6WXXsrBgwfR6XTYbDYaGxuRJAmdTkdKSgpnz54lKSmJ/Px8Ro4cidFo5Be/+AVVVVWhcY8ePZonn3yShoYGNm/ezOHDh6msrMTj8TBq1ChKS0sZN24cJSUlqFQqLr30Uq644goOHDiAw+HgxIkTqNVqVCoVgUAAg8HAoEGDqKmpwe/34/F4eOutt5g1axYej4cRI0Ywa9Ys9u3bh16v58yZM1RVVTF48GCSkpJ46aWXuO2227jnnnsYM2YMixYt4qc//Sl33XUXTz31FHa7nauuuopVq1bhdruprKwkKyuLTZs2hZ5bpaWl6PV63G43er2eBx98kPHjx/PAAw9w6NAhxo8fT11dHU888QR/+MMfMBqN5OTkEBcXx9q1a8nPz6e8vJzY2Fg2bdrEmDFjevRclsWy0pYtW3jjjTd4/fXX+dOf/kR1dXXo/zZt2hS6mZcvX87IkSN58cUXyc3N5f9v79yDmrzSBv4jCYEABgEBWZaLIFJuFuViu7AW7ShqDIi6Vp2xS522K1stuq1FqGOn1bEt7tZ17eourNpuHW+7iiEaFu1Ia6vSYpSbghXkJgKtqBASAiR5vz8Y3k/rpfvNN7P6zZffX+HNk/M+5+Q557mcN5zXX3+drVu3PrTd3t5e9u7dy/Lly9m4cSPz5s1Dq9WiVqvvSWd7e3v5+9//Tm5uLitWrCAzM5Pjx4/z3XffkZmZyd/+9jfGjh2Lk5MTu3fvRiKRsGfPHvHzUqmU/fv3c/bsWXp6eigoKGDlypXDh7R//LEo19TUxKJFi9Bqtbi6urJv3z5g+JS8gwcPEhoayl/+8heKi4s5ffo0ra2tACgUClJSUvjrX//KlStXaGxs5Ouvv+bKlSts3rwZjUbDpUuXqKioQKVSUVJSIt6zpKSEWbNmAcNp/OrVq9HpdNTW1rJv3z48PDz44osvkEgk6PV6AAYGBnjzzTfJyclBLpeTkJCARqNBp9OxcOFCDh8+zKhRowgKCiInJ4d9+/bh7u6OVqtl2bJlDAwMMGvWLD777DM6OjpYtGgRMpmM1NRUZs+ezYQJE+4ZF6vVyj//+U/y8vLE6/v378fZ2RmtVsuKFSu4dOmSKB8UFMSrr75KZWUloaGhSCSPNmONRoNGoyE7O5vo6GgkEgkymYyMjAyKior49NNPuXnzJoIgUFNTw4kTJzh69Cjbt2+ntrb2oe1arVZMJhO7du0iPDwcuVzOc889x9ixY/Hx8WH37t0YjUZ0Oh3ffvstJpOJLVu2AMMZw6lTpzh27BhyuZw7d+6wYsUKIiMj0el0bNy4kQsXLrBgwQKOHDnCpk2b8PT05NixY+j1emJjY9m5cyc9PT04OjpSXFxMTU0NFRUV6PV6tm7dSllZGU1NTdy4cYOwsDDS09P5wx/+QHFxMYGBgRQUFHD06FG0Wi2ZmZlUV1eTnJzMSy+9RFtbGydOnMBqtbJ3715+//vfMzg4yNSpU0lJScFkMiGRSMTzV0JDQ6mrq+POnTuUlZUREBDA7t27GT9+PMHBwVitVpydndm0aRO+vr6YzWamTZtGfHw8KSkppKamYjKZcHR0RKvVYrPZqK6uJi8vDx8fHwwGA2+88QYqleoevd99910AduzYgZubG1qtlqNHjxIQEIBGo8FisTAwMEBlZSXz58/nwoULaDQaenp6kEqlKJVKFi9eTEdHB6WlpcyaNYuamhp27drF+vXr6erqQhAEZsyYQVBQECtXruTixYsUFBRw4MABXF1d2bx5M2FhYezcuROAhIQE9Ho9fX19SKVSMWDR6/XExcXh5OTEn//8Z4qKiti6dat4CFpNTQ2VlZWsWbOGgIAAPD09eeGFF8jPzycnJ4dVq1YRGBhITk4OZrNZnOdtbW14eXmxZ88eNm/eTGRkJFqtljVr1pCTk/PIufEongjn8Nlnn5GWlsaiRYvo6OigpaXlobIGg4Hs7Gzmzp3L+++/z9WrVx8qO2fOHPH1xYsXxXpdenq6uBACTJs2DQcHB8LDwxkzZgzh4eFIJBLGjx/P/v37WbhwIZWVlTQ1NfHCCy9gsVjuSTF//vOfA3DhwgUAEhMTSU9PRyaTcf78eVHOz8+PuLg4ANLS0kQdRtJ+m81GaGioaBgKhYLBwUHUarXYts1mw8vLi5MnT3L9+nW2bNlCRkYG165do7m5mcjISLq7u+nq6qK+vh6lUsnPfvYzYDiNHynN6fV6AgICmDlzJmPGjCE1NZXAwED6+/vFPpw5c4bu7m4OHjxIWloaZrNZjJSVSqXYL71eL471uHHjkMvljBs3jqqqKvr7+/njH//ItWvX0Ov13Lhxg4yMjHvGZcaMGQBERUXR3t4OQEVFBWlpaQA89dRThIeHi/Ijex7JycnU19fT0dHxUBsYobm5mfz8fLZu3SqeXX769GnUajUvvfQSFouF27dvo9fref7553F2dsbNzY1p06Y9tE2pVEpAQAChoaEYDAbMZjO1tbV0dXVhNBq5ffs2UqmUBQsWkJSURHd3N1euXAEgKSkJhUJBdnY2sbGxLFmyhKqqKlQqFV5eXri5uSEIAp988gnp6els2LCByspK1Go133//PR4eHsCw7UkkEtHh9fT0kJGRwUcffURvby83b95k9OjRnD17ltraWhobGxk1avj/+YeHh/Pmm2+i0WiQSqVMnDgRd3d3JBIJKpUKvV6P2WymubmZVatWIZPJqKiooKurCx8fH6xWKzNnzsTFxQW5XM7g4CDd3d1s27aNgYEBVq5cyYIFC5DL5cyYMYNJkybxj3/8g2vXruHr68uECRMQBIGuri4KCgowGo1cv34dgOTkZNzc3Bg7diwODg7Ex8eLtvFjvQHOnTt3Txlp5LpEImHZsmVIpVISEhLw9vams7OTuro6qqqqaG9vp6CgAJlMxtDQEPX19cTGxlJTU0NgYCAymUzMNru6uigsLKSgoAAHBweys7Pp7Oxk/fr16PV6rFYrAHFxcaKTTklJwWg00t/fT3t7OyEhIQiCwEcffYRareaDDz5gcHCQ+vp6dDodnp6eNDQ0kJaWxvTp03F1dWXSpElUV1fz7rvv0tLSwoYNGwDE/SilUsns2bMZP348RqNRzJSfffZZ7ty5g8Fg+Mn58SAeu3P45ptvOHv2LAcPHqS4uJjIyEgxJX0Q27ZtY8qUKRw7doydO3cyODgIQG5uLunp6bzyyiui7MhC9iAcHBzE13K5XLw28hqGT7urq6vjrbfeYvbs2cTHx7Nx48Z7TrITBOHfrt/ffc+7/767dn93WyOprre3Nz09PXz11VdIJBLi4+O5du0a3t7eaLVaNBoNJ0+e5Fe/+hUAqamplJaWotPpUKlUYnsuLv99KPlINfHHOt2NIAgsXryY0NBQ9u3bh6+vr3iPH8s9qF+CIBAcHIxKpcLb2xudTvfAfYORMZdIJOIEe5hubW1tnDp1iqNHj7JmzRocHBw4d+7cfXJ325DJZGL16tVi1ArQ0NCAyWTiyJEjaDQaJBKJaEsPQyqVin0dkZXL5XzyySc4OzsTExPD2rVrsVgsWK1WsUyRnZ1NTU0NpaWlYlsKhYJ33nmHmTNn4ufnJ/b17rGTyWS89dZbHDp0CLPZTGlpKVqtVlyI7x67kc/OmDEDjUZDYWEhwcHBJCQkoFQqOXLkCEqlEq1Wy8cff0xVVRU//PADly9f5l//+pe44EilUmw2m9je0NAQ8fHxFBYW4uPjg06nY+3ateI+iaOjIw4ODthsNhwcHMjJySExMZH+/n78/Py4fPkyV65cQS6X895777FixQosFgs//PADBoOBtrY23N3diYmJITIykqGhIbE/d2eEcrlctI2CggKWLl3KpUuXmD9/vljKe5C93N3GyHyaPHkyAwMDxMbG8stf/hIXFxeysrJEh/ww3NzcMBqNNDU1ietQRUUF+fn5DA4OMm/ePG7fvk1MTAy1tbWcP3+e+Ph4IiMjOXToENHR0QBotVpu3bol2p6bmxsnT56krq6OsLCwB+rg4uJCYWEhQUFB4nwfPXo0PT09VFdX3xMI/5hHzfFH8didg8FgwN3dHYVCQWNjI5WVlT8pPzLBi4qKxOvvv/++OCkexKRJkzh+/Dgw/OWMRPCPYmhoCBcXFxITE/n222/F9NDLy4svv/wSm80mRtoAkydPBuD8+fMUFxdjtVpJSEgQ379x44bYxvHjx+/TYfz48bS2topltZFJOqL/p59+KjqHq1evMjQ0hNFoBIajmu7ubgBUKhU6nY7S0lJSU1Mf2LeEhASxdHDr1i1OnDgh1ilH+pCcnMz+/fuJjY1FqVTi7OzMqVOncHV1FZ8kg+FIaSTFbWlpERfm2NhY2tvbsVqtKJVKzpw5Q1NTExqN5p5xeZh+Wq0WgO+++06MuI1GIzKZjMDAQKZPn47FYhEjyjFjxtDY2IjNZuPzzz8X28rNzWX+/PnEx8eL1xQKBWazGUdHRw4cOCAuPJMnT6asrIyBgQGMRiNffPGF+Bl/f3+xzPTll1+K1w0GA87Ozjg4OFBRUSF+b05OThiNRnx8fADEp4ZG+mQ0Gnn11VdJSkri8OHDPP300+h0Orq7uzGZTFitVi5evMjAwACCIPD999+L/R/JmHt7e8U2fXx8KC8vF23CYrHQ19eHyWRCoVAQERFBUlISly9fJiYmhh07dvD555/zpz/9CZPJRHV1NQqFgkuXLlFSUoKPjw/d3d3U1tbS3t7OjRs3KC8vp62tDYPBcI9jgmF7FQQBvV5PYmIiEomEvLw8TKbhU8taW1uJiorCzc0Nm81GZWUlVquVGzdu8Itf/IKGhgbxezhz5swDjwu22Wx0dHTwzDPPsHbtWgwGAyaTiaSkJPbu3QuAq6urGC1LJBJKSkqwWq309fVx8+ZNlixZgrOzM1evXqW6uhpXV1dOnz6N1WolKiqKqqoqJk6cSFtbGxaLhZCQEJycnJDL5Wzfvp2cnBw6Ojrw9fWltbVVzNA9PDzo7OxELpfj5+dHSUkJsbGxxMfHs3v3bnG+GwwGvLy8cHR0pLy8HIPBQFlZGc3NzXR2dhIbG4tWq6WsrAyTyURlZSWBgYGiLQqCQH19PSqViqtXr2I2m8XMWiqVUlxcDAwH3h4eHuJe1f+Ux/600tSpUzlw4ABqtZpx48YRGxv7SPmXX36ZdevWsWfPHp555pl/+z7r168nLy+PXbt2iRvSP4Wvry+9vb38+te/JigoCKPRSF5eHlarlby8PEJCQu6J9N9++21ee+01Xn75ZVxdXbHZbLz22muioYaGhlJUVMSGDRsIDg5myZIlokGP3C86Opply5YhkUjo6ekR34uLi+Prr79GIpEQGRmJ2Wxmzpw54mOZLi4ubNmyBS8vL8LCwsRFaWRh+jFRUVEsXbqUwsJCpk6dir+/P88++ywwvKjl5+fT39/P6NGj+eabb1Cr1chkMrZs2YJSqcTPz4+WlhY+/PBDVq1axbp161Cr1QQFBeHk5MSoUaPw9PRkzpw5lJaWolAo+O1vf4unpycRERE/Of5LliwhNzcXtVpNREQEEydOpK6ujqeeeorRo0czefJkccImJSUB8MYbb/Cb3/wGPz8/wsLCMJlMtLe3U1paSnNzM4cPHwaGF5jf/e53qNVqnn76afz8/MTsbeLEiUyfPp20tDT8/f2Jjo4WyzDLly9n9erVFBcXExERIeq6dOlSioqKRCfo7OwMDKf7d+/fjAQ1AJcvX8bb21ssAfj7+7Njxw5u3brFnDlziIuLY8qUKZSXl3Pu3DkEQeCVV14hMjKS5ORkKisrycrKuieA8PX1xdfXl8WLFzM0NERHRwcDAwPcuXOHhQsXYjab6erqws/Pj+bmZt5++236+voQBIHU1FRaW1u5cOECX331lbhJHBwcTFZWFps2bUIul/P666/j5OQk9vVubDYb27dv5/r16zg4OCCTyZg6dSpjxowBID8/n8bGRm7evIm7uzsNDQ10d3eLG/PJycnodDrUajW+vr5iOfRurFYra9euFfXOzMxEqVSSlZXFe++9x9y5c5FIJPj7+zN37lxsNhsTJkwgPT2dvr4+oqOjmTJlCh4eHmLJxWKx4OzsTHp6OoIgEBUVxfLly7Farfj6+iKXywkJCaGkpIQ1a9Ywb948Dhw4wIcffijuK/T29jJ9+nRx8zcuLo7y8nIUCgVxcXF0dnaKwYlarSYrK4v58+cTERFBSEgI/f39BAQEkJiYyLZt2xgaGsJgMHDo0CFyc3OJiYlh3bp1tLS0oFKpxLm/cePGewJAR0dHamtrUavVKBQKPvjgg0fOs0ci2LHzv8RisQhms1kQBEFoaWkRpk2bJgwMDDxmrR7MrVu3hJSUlEfK9PX1CYIgCCaTScjIyBBqa2v/E6r9v6GtrU1QqVSPWw3BZDIJzz//vNDb2/u4VRF5kmzvsWcOdv7v09/fz4svvijWft955537Sg5PAl1dXbz44ossX778kXIbNmygoaGBgYEBMjIyiIqK+g9paOc/xdmzZ8nLyyMzM1PMDJ8EniTbeyJ+52DHjh07dp4sHvuGtB07duzYefKwOwc7duzYsXMfdudgx44dO3buw+4c7NixY8fOfdidgx07duzYuQ+7c7Bjx44dO/fxX7kTk31l0hvvAAAAAElFTkSuQmCC\n",
"text/plain": "<Figure size 432x288 with 1 Axes>"
},
"metadata": {}
}
]
},
{
"metadata": {
"trusted": true
},
"cell_type": "code",
"source": "",
"execution_count": null,
"outputs": []
}
],
"metadata": {
"kernelspec": {
"name": "python36",
"display_name": "Python 3.6",
"language": "python"
},
"language_info": {
"mimetype": "text/x-python",
"nbconvert_exporter": "python",
"name": "python",
"pygments_lexer": "ipython3",
"version": "3.6.6",
"file_extension": ".py",
"codemirror_mode": {
"version": 3,
"name": "ipython"
}
}
},
"nbformat": 4,
"nbformat_minor": 2
}
\ No newline at end of file
%% Cell type:code id: tags:
```
python
import
csv
import
numpy
as
np
import
matplotlib.pyplot
as
plt
from
sklearn
import
datasets
```
%% Cell type:code id: tags:
```
python
import
pandas
as
pd
Automobile_data
=
pd
.
read_csv
(
'
Automobile_data.csv
'
)
```
%% Cell type:code id: tags:
```
python
Automobile_data
.
head
(
n
=
5
)
```
%% Output
index company body-style wheel-base length engine-type
\
0 0 alfa-romero convertible 88.6 168.8 dohc
1 1 alfa-romero convertible 88.6 168.8 dohc
2 2 alfa-romero hatchback 94.5 171.2 ohcv
3 3 audi sedan 99.8 176.6 ohc
4 4 audi sedan 99.4 176.6 ohc
num-of-cylinders horsepower average-mileage price
0 four 111 21 13495.0
1 four 111 21 16500.0
2 six 154 19 16500.0
3 four 102 24 13950.0
4 five 115 18 17450.0
%% Cell type:code id: tags:
```
python
Automobile_data
.
tail
(
n
=
5
)
```
%% Output
index company body-style wheel-base length engine-type \
56 81 volkswagen sedan 97.3 171.7 ohc
57 82 volkswagen sedan 97.3 171.7 ohc
58 86 volkswagen sedan 97.3 171.7 ohc
59 87 volvo sedan 104.3 188.8 ohc
60 88 volvo wagon 104.3 188.8 ohc
num-of-cylinders horsepower average-mileage price
56 four 85 27 7975.0
57 four 52 37 7995.0
58 four 100 26 9995.0
59 four 114 23 12940.0
60 four 114 23 13415.0
%% Cell type:code id: tags:
```
python
print
(
'
Maximum:
'
,
Automobile_data
.
price
.
max
(),
Automobile_data
.
company
)
```
%% Output
Maximum: 45400.0 0 alfa-romero
1 alfa-romero
2 alfa-romero
3 audi
4 audi
5 audi
6 audi
7 bmw
8 bmw
9 bmw
10 bmw
11 bmw
12 bmw
13 chevrolet
14 chevrolet
15 chevrolet
16 dodge
17 dodge
18 honda
19 honda
20 honda
21 isuzu
22 isuzu
23 isuzu
24 jaguar
25 jaguar
26 jaguar
27 mazda
28 mazda
29 mazda
...
31 mazda
32 mercedes-benz
33 mercedes-benz
34 mercedes-benz
35 mercedes-benz
36 mitsubishi
37 mitsubishi
38 mitsubishi
39 mitsubishi
40 nissan
41 nissan
42 nissan
43 nissan
44 nissan
45 porsche
46 porsche
47 porsche
48 toyota
49 toyota
50 toyota
51 toyota
52 toyota
53 toyota
54 toyota
55 volkswagen
56 volkswagen
57 volkswagen
58 volkswagen
59 volvo
60 volvo
Name: company, Length: 61, dtype: object
%% Cell type:code id: tags:
```
python
Automobile_data
.
company
.
value_counts
()
```
%% Output
toyota 7
bmw 6
nissan 5
mazda 5
volkswagen 4
audi 4
mitsubishi 4
mercedes-benz 4
chevrolet 3
alfa-romero 3
isuzu 3
jaguar 3
honda 3
porsche 3
dodge 2
volvo 2
Name: company, dtype: int64
%% Cell type:code id: tags:
```
python
index
=
np
.
arange
(
len
(
Automobile_data
.
company
.
value_counts
()))
```
%% Cell type:code id: tags:
```
python
def
plot_bar_x
():
# this is for plotting purpose
index
=
np
.
arange
(
len
(
Automobile_data
.
company
.
value_counts
()))
plt
.
bar
(
index
,
Automobile_data
.
company
.
value_counts
())
plt
.
xlabel
(
'
company
'
,
fontsize
=
20
)
plt
.
ylabel
(
'
No of cars
'
,
fontsize
=
20
)
plt
.
xticks
(
index
,
Automobile_data
.
company
.
value_counts
(),
fontsize
=
5
,
rotation
=
30
)
plt
.
title
(
'
company cars analysis
'
)
plt
.
show
()
```
%% Cell type:code id: tags:
```
python
plot_bar_x
()
```
%% Output
%% Cell type:code id: tags:
```
python
import
seaborn
as
sns
sns
.
set_style
(
"
darkgrid
"
)
plt
.
plot
(
Automobile_data
.
company
,
Automobile_data
.
price
)
plt
.
show
()
```
%% Output
%% Cell type:code id: tags:
```
python
```
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment