Skip to content
GitLab
Explore
Sign in
Register
Primary navigation
Search or go to…
Project
N
nn
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Container registry
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Saravanan G
nn
Commits
7e7d206f
Commit
7e7d206f
authored
6 years ago
by
Saravanan G
Browse files
Options
Downloads
Patches
Plain Diff
Upload New File
parent
3a56a457
No related branches found
No related tags found
No related merge requests found
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
Image_colorization.ipynb
+1
-0
1 addition, 0 deletions
Image_colorization.ipynb
with
1 addition
and
0 deletions
Image_colorization.ipynb
0 → 100644
+
1
−
0
View file @
7e7d206f
{"nbformat":4,"nbformat_minor":0,"metadata":{"colab":{"name":"Image_colorization.ipynb","version":"0.3.2","provenance":[],"collapsed_sections":[]},"kernelspec":{"name":"python3","display_name":"Python 3"},"accelerator":"GPU"},"cells":[{"metadata":{"id":"DMrlFt9mdFHQ","colab_type":"code","outputId":"1b358de3-d946-4509-e495-fd3bae9609c9","colab":{"base_uri":"https://localhost:8080/","height":34}},"cell_type":"code","source":["from keras.datasets import cifar100\n","(x_train,_), (x_test,_) = cifar100.load_data()"],"execution_count":0,"outputs":[{"output_type":"stream","text":["Using TensorFlow backend.\n"],"name":"stderr"}]},{"metadata":{"id":"lAPwBpSwdJ1g","colab_type":"code","colab":{}},"cell_type":"code","source":["import cv2\n","import numpy as np"],"execution_count":0,"outputs":[]},{"metadata":{"id":"sirX-_SVdKxt","colab_type":"code","colab":{}},"cell_type":"code","source":["x_traing=[]\n","x_testg=[]\n","for i in range(50000):\n"," x_traing.append(cv2.cvtColor(x_train[i], cv2.COLOR_BGR2GRAY))\n","for i in range(10000):\n"," x_testg.append(cv2.cvtColor(x_test[i], cv2.COLOR_BGR2GRAY))"],"execution_count":0,"outputs":[]},{"metadata":{"id":"MonZ25bQdMKQ","colab_type":"code","colab":{}},"cell_type":"code","source":["x_traing=np.array(x_traing)\n","x_testg=np.array(x_testg)\n","x_traing=x_traing.reshape(50000,32,32,1)\n","x_testg=x_testg.reshape(10000,32,32,1)"],"execution_count":0,"outputs":[]},{"metadata":{"id":"9tg_scxTdNGd","colab_type":"code","outputId":"9868c2fa-553e-45d0-8fc4-2d6808c03226","colab":{"base_uri":"https://localhost:8080/","height":34}},"cell_type":"code","source":["x_traing = x_traing/255.0\n","x_testg = x_testg/255.0\n","\n","x_train = x_train/255.0\n","x_test = x_test/255.0\n","\n","x_testg.shape\n"],"execution_count":0,"outputs":[{"output_type":"execute_result","data":{"text/plain":["(10000, 32, 32, 1)"]},"metadata":{"tags":[]},"execution_count":5}]},{"metadata":{"id":"EHOIteGrdOTX","colab_type":"code","colab":{}},"cell_type":"code","source":["from keras.layers import Input, Dense, Conv2D, MaxPooling2D, UpSampling2D\n","from keras.models import Model\n","from keras import backend as K\n","\n","input_img = Input(shape=(32,32,1))\n","\n","x = Conv2D(32, (3, 3), activation='relu', padding='same')(input_img) \n","x = MaxPooling2D((2, 2), padding='same')(x) \n","x= Conv2D(64, (3, 3), activation='relu', padding='same')(x) \n","x= Conv2D(64, (3, 3), activation='relu', padding='same')(x) \n","x= MaxPooling2D((2, 2), padding='same')(x) # 8x8x128\n","encoded = Conv2D(128, (3, 3), activation='relu', padding='same')(x)\n","\n","\n","\n","x = UpSampling2D((2, 2))(encoded) \n","x = Conv2D(128, (3, 3), activation='relu', padding='same')(x) \n","x = Conv2D(128, (3, 3), activation='relu', padding='same')(x) \n","x = UpSampling2D((2, 2))(x) \n","x= Conv2D(64, (3, 3), activation='relu', padding='same')(x) \n","decoded = Conv2D(3, (3, 3), activation='linear', padding='same')(x)\n","\n","autoencoder = Model(input_img, decoded)\n","autoencoder.compile(optimizer='adam', loss='mean_squared_error',metrics=['accuracy'])"],"execution_count":0,"outputs":[]},{"metadata":{"id":"il27APdEdPwJ","colab_type":"code","outputId":"d8bae355-e114-40e7-bb1c-50ca8ebafe00","colab":{"base_uri":"https://localhost:8080/","height":571}},"cell_type":"code","source":["autoencoder.summary()"],"execution_count":0,"outputs":[{"output_type":"stream","text":["_________________________________________________________________\n","Layer (type) Output Shape Param # \n","=================================================================\n","input_6 (InputLayer) (None, 32, 32, 1) 0 \n","_________________________________________________________________\n","conv2d_35 (Conv2D) (None, 32, 32, 32) 320 \n","_________________________________________________________________\n","max_pooling2d_11 (MaxPooling (None, 16, 16, 32) 0 \n","_________________________________________________________________\n","conv2d_36 (Conv2D) (None, 16, 16, 64) 18496 \n","_________________________________________________________________\n","conv2d_37 (Conv2D) (None, 16, 16, 64) 36928 \n","_________________________________________________________________\n","max_pooling2d_12 (MaxPooling (None, 8, 8, 64) 0 \n","_________________________________________________________________\n","conv2d_38 (Conv2D) (None, 8, 8, 128) 73856 \n","_________________________________________________________________\n","up_sampling2d_11 (UpSampling (None, 16, 16, 128) 0 \n","_________________________________________________________________\n","conv2d_39 (Conv2D) (None, 16, 16, 128) 147584 \n","_________________________________________________________________\n","conv2d_40 (Conv2D) (None, 16, 16, 128) 147584 \n","_________________________________________________________________\n","up_sampling2d_12 (UpSampling (None, 32, 32, 128) 0 \n","_________________________________________________________________\n","conv2d_41 (Conv2D) (None, 32, 32, 64) 73792 \n","_________________________________________________________________\n","conv2d_42 (Conv2D) (None, 32, 32, 3) 1731 \n","=================================================================\n","Total params: 500,291\n","Trainable params: 500,291\n","Non-trainable params: 0\n","_________________________________________________________________\n"],"name":"stdout"}]},{"metadata":{"id":"CZYsS1dOdReo","colab_type":"code","outputId":"ac84ea91-8da0-4f78-f20d-2e4878e8b641","colab":{"base_uri":"https://localhost:8080/","height":202}},"cell_type":"code","source":["autoencoder.fit(x_traing,x_train,epochs=5,batch_size=256)"],"execution_count":0,"outputs":[{"output_type":"stream","text":["Epoch 1/5\n","50000/50000 [==============================] - 27s 549us/step - loss: 0.0095 - acc: 0.5086\n","Epoch 2/5\n","50000/50000 [==============================] - 27s 548us/step - loss: 0.0094 - acc: 0.5101\n","Epoch 3/5\n","50000/50000 [==============================] - 27s 549us/step - loss: 0.0094 - acc: 0.5113\n","Epoch 4/5\n","50000/50000 [==============================] - 27s 549us/step - loss: 0.0093 - acc: 0.5142\n","Epoch 5/5\n","50000/50000 [==============================] - 27s 548us/step - loss: 0.0093 - acc: 0.5141\n"],"name":"stdout"},{"output_type":"execute_result","data":{"text/plain":["<keras.callbacks.History at 0x7f7798d939e8>"]},"metadata":{"tags":[]},"execution_count":43}]},{"metadata":{"id":"BnaA8fkOdS2b","colab_type":"code","outputId":"4e8468c3-50f6-4d46-d320-aeb528b7b1f5","colab":{"base_uri":"https://localhost:8080/","height":285}},"cell_type":"code","source":[" import matplotlib.pyplot as plt #test image in black and white\n","%matplotlib inline\n","t_imgg=x_traing[50]\n","t_imgg = t_imgg.reshape(32,32)\n","\n","plt.subplot(2,1,1)\n","plt.imshow(t_imgg,cmap='gray')\n","\n","t_colorimg = x_train[50]\n","t_colorimg = t_colorimg.reshape(32,32,3)\n","plt.subplot(2,1,2)\n","plt.imshow(t_colorimg)"],"execution_count":0,"outputs":[{"output_type":"execute_result","data":{"text/plain":["<matplotlib.image.AxesImage at 0x7f77988ab358>"]},"metadata":{"tags":[]},"execution_count":54},{"output_type":"display_data","data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAAAIMAAAD7CAYAAABJ7CfKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAH1FJREFUeJztXWuQXVWV/u6j3510mjw6CYRECbUJ\nZiAiDiADQUB5CEUcQKqQKcrB0rGQwqoZCsSpGh0tBayRh8yIFE4hTqVK9AdimZqKWI68SiU4MFqS\njSCGPEin8+jH7ed9nPnR3Xt9++Tu2+demtPpZn2/1j13n7P3ub17rb3emSiKoFAAQHauF6A4dqCb\nQeGgm0HhoJtB4aCbQeGgm0HhkG/0RmPMvQDOBhABuNVa+8KsrUoxJ2iIMxhjNgM42Vp7DoCbADww\nq6tSzAka5QwXAXgCAKy1rxhjuo0xi621g9UGb9myJQKA+++/H5/73Ofc9VKp5OhisehoNoSVy2Xv\nWblcztHZbLYuuqmpydGZTKbqGL6eFLzeSqVy1PUHH3zQe29+h/j7TWNgYMDRO3fu9L47fPiwoxcv\nXuzo9evXO3r58uWO5vfbtm1b8AUbPTOsBNBHn/umrtXE2rVrG5xufmO+vHfDZ4YYav473X///e4H\n2bZt2yxNOb8wH9670c2wDz4nWA3grdDgW265BQDw5JNP4pJLLnHXWTQwmO3G2TazvHw+X9d1pplV\nh/wzzPJrge+v9qwnnngCW7ZsqfpcFpWtra1Vn//mm296n/fv3+/ogwcPOprf2xjj6KVLlzp6+/bt\n1V8CjYuJ7QCumZr0DAD7rLVDDT5LcYygoc1grX0ewIvGmOcxqUncPKurUswJGj4zWGvvSDqWWSGz\nUWbboVN1HCG239LS4uh6NQUWGczCk64vSRhANS0D8H+b5uZmR3d3dwefxWx/cFAUOBYfb70lUpu1\nj1pQC6TCQTeDwmG2VMuaYFYYYsMh8AkZ8A1HzN7rNRaFxMc7JRoYoefydRYZLBYAX+tg8cjXWcsY\nGkp2tlfOoHDQzaBwSEVMMBsOGYRCLD+JKAF8lsz383WegxHyhYSeWe1ztWfx2kNihX8PHjMyMuLo\n/v5+757h4eGqz2pra3P0mjVrHN3e3l51fBzKGRQOuhkUDqmIiZDbmU/MzHZDLuH4dyHRErpeyzUe\nmq/avY0giajkNTHNGhQALFq0yNEdHR1Vx/F8LHJqQTmDwkE3g8JBN4PCIZUzA8tIpkPymS2WtZ4V\nOieEZPLExETVuUPqa9JzQpJxIbU2NIbPU/H18ThWG0MWzEOHDs04N6CcQUHQzaBwSEVMMEIsNaR6\nxcEsMkTzHKHQuiSOqqRhb/WC52N23tnZ6Wi2Jo6NjQWfxWscHx93NFstQ79BHMoZFA66GRQOqYiJ\nJKIhFM4WRxLnFp+qQ5HWM0U0z7SOEEKihUVfKB6BRQZfj4fAcXwCa16sLY2Ojjo66XsoZ1A46GZQ\nOKSuTTBC2kCtELaQFpBEFCVBI7mWoTWx44idS6HxLBpY3Bw4cMCbL+RkY4dUUg2CkWgzGGM2AvgJ\ngHuttQ8aY9YA+AGAHCYzqf7OWjte6xmKYx8zigljTAeAbwP4BV3+VwD/bq09D8BrAP7+nVmeIk0k\n4QzjAC4HcDtduwDAP0zRPwXwTwC+E3oAs8skyS5JkTTxphqSiINaawqFx7E4CGkKbFzq65Nk9kKh\nUHUMp+fH52bwOlh7Sfo7zbgZrLUlACVO5ATQQWLhAIBViWZTHNOYjQPkjP9i9913H0488UQAwI9/\n/ONZmHL+4aGHHprrJcyIRjdDwRjTZq0dBXA8JlP0g7jjjsm0zK1bt+K6666rOiZJtHEt1BveVq+I\nihuTjjvuOEd3dXU5msPQpsfccsstuPvuu911TophAxL7E5hmURL/LhT2FsLWrVuD3zVqZ3gKwNVT\n9NUA/rvB5yiOIczIGYwxHwDwbwDWASgaY64B8EkAjxpjPgtgF4Dvv5OLVKSDJAfIFzGpPcTxkdlc\nSMiH0IgRqF6E0uVZA2CxAPjFtELGoiVLljh62bJlVefgMayJMOKijg1KbKxjccXrUBe2om7oZlA4\npO6beLvGHkaSSKRQrmWoFiOLBq6luHr1au+5IdHAbmTOiWSX8r59onxx5ZXQe3MEE+BHQfHvuW7d\nOkez27u3t7fqc+NQzqBw0M2gcJhTF3Yj/oh6EcrzZNHAp/BNmzY5mk/6cbAIYDbMz+W5ufgWF9xi\nscJIYjgDfBHFPgw2bK1alcxboJxB4aCbQeGQupiYTdEQehaz1dAYDkrlkze7jhnx6inMeqedcIAv\nMtglzWlwXAmeDUKsNdQqmcyigQt5vf76644+cuSIo0899dSj3qcalDMoHHQzKBzmVJt4pxByZzOr\n7unpqUozy+fxzI4BX9NgmjWIP//5z45m1s5iIlRVhcVYPCuds6pZJLI7nGnVJhR1QzeDwkE3g8Jh\nQZ4ZGBwjwM4mjk847bTTHH3SSSc5mp1L7LSKf8f0ypXSoIflOZ8rWOXkKGZeK6fhx1VLPgexJZTV\nVD6LPPvss0gC5QwKB90MCofUxUS9LQYaqZ7C/v4NGzZUnY9pZrU7duxwNMc2xJ1WzMZZ9eM4B2bn\nrE5y7iS/H6uTrKLGrZ8hsPjh57IYqwXlDAoH3QwKh2NSm2iknySfxDn8izUIPmGHimFxHACLhng3\nF44dCMUbsCjh8SwOQk41jnOIz83NyPi5fA9bT+OdbEJImpJ/D4DzpsZ/A8AL0JT8BYckKfkfBrDR\nWnsOgEsB3AdNyV+QSMIZngbw2ym6H0AH6kzJZ9Qbz5B0PGeJb9y40dHMLnft2uVoPvWzoYmNQKxl\nxA0//FyOHeB7WNyxZsIijdk8h8NxBHW8cgs7qlhUhkoxJ20xkCSjqgxg+g1vArANwCWakr/wkEma\n5WyMuQrAnQA+CuBP1toVU9fXA3jMWvuh0L27d++OuGeSYk4RTFxJeoC8BMCXAFxqrR0wxtSVkn/7\n7ZNFX7Zu3Yrrr79+xvmSFvs65ZRTHH3mmWc6OnRCZ9bO9/IcHMXMWkZcXDFLDyWpTP+jffrTn8Z3\nv/tdd53FCosu1hJYFMTLBYcMd0yztsRi6Zlnnqm6ViDZAbILwDcBXGGtnf4FNCV/ASIJZ7gOwDIA\nj9Mh7UYAj2hK/sJCkgPkwwAervLVrKbkM2rVd1y7dq2jWYP4y1/+4uhQmjq7rUMtgdnPwDZ9tvvH\nPzN7Zjcyz7F3715H79mzx9Eslng+1naYjq+R52OjU6geZS2oOVrhoJtB4XDM+CZCzUOOP/54b9y5\n557r6B/96EeO/vnPf+7oz3/+847m3ElmnXxaZ1bNLDjURjn+HbN3jqLmOV577TVHh1zSnMBTS4vi\nNbKmEaq4z76QWlDOoHDQzaBwmFMxEWpLyMahCy+80Lvn9NNPdzTXNOTTOp/iQ6f73/zmN45mzYDF\nENdY5AorQNhwxMYo9lPw3PzeIQNbLTd+qJEJ06GKNbWgnEHhoJtB4ZB6x1s2gDAL5zqJmzdvdvRZ\nZ53lPYuNSF/5ylccfcUVVziabfFvvPGGox9//HFH86n/hhtucDQHrnKZ3p07d3rr4DzKUM8oBr93\nUudgEvBv+3afq5xB4aCbQeGQiphg2zqfbDlQk0UD+xziPgQ+rXMEDwev7t6929G//vWvHc2n+y1b\ntjiaU/J/97vfOZpFTDzaKF6bsRrqLXXcCJtPck/S5iPKGRQOuhkUDroZFA6pnBlCIVjXXnuto7lk\nP1v73nzzTe9Z7PzhMwPHCLBTiMdccMEFjuazy3PPPedoDmGrFVXM94eshUlaLIeuh9oexPF2mrbF\noZxB4aCbQeGQipjgFHlm1axCsuOHVcO4mGDVkuMQmL2zOspiicfzfKFwsVqigFl3KNEnifgIjU9a\nOzqERkoZKGdQOOhmUDikIiY4dI2tgN//vkTYM6tmFh5v/cv3s5YSYu8cqxCPcJ5GqPVArVN80tN+\nmuC1N9LoLUkrw3YAjwLoAdAK4KsAXoam5C84JBETVwLYYa3dDOATAL4FTclfkEiSRPND+rgGwB7U\nmZLPIWnbt293dMj3z6gVspUknCtJW+WQNsHio5Y2kURM8JgkIiapBtGI1hBC4jODMeZ5ACcAuALA\nU5qSv/CQOCUfAIwxmwA8BmCVtXb51LUZU/L37t0bxfMfFHOGxlPyp3phH7DW7rbWvmSMyQMYqicl\n/7bbbgNwdEp+qLdkUjCLrPf+kNZQK8+TEWL71UTftm3bcPnll1d9TkhkJNUGQuIqJD6eeuqp4LOS\nHCDPB/CPAGCM6QHQCU3JX5BIcmZ4CMD3jDHPAGgDcDOAHQAe05T8hYW6zgyKhQ01RyscdDMoHHQz\nKBx0MygcdDMoHHQzKBxSq89gjLkXwNkAIgC3WmtfSGvutDFfq/CnwhmMMZsBnDxVmf4mAA+kMe9c\nYD5X4U9LTFwE4AkAsNa+AqDbGLO49i3zFk8DmE4I4Sr8T05d+ymAi9Nf1sxIS0ysBPAife6bujZY\nffj8xXyuwj9XNZ3qD9CbZ5iqwn8Tpqrw01fH7LunJSb2YZITTGM1Jg9SCxJUhf8ya+0AgIIxZjp5\nZEaX/1whrc2wHcA1AGCMOQPAPmtt9eLN8xzzuQp/al5LY8xdmIyNqAC42Vr7cioTpwxjzGcAfBnA\nq3T5RgCPYDK6fBeAT1lri0ffPbdQF7bCQS2QCgfdDAqHhlXLd5N5+d2ChjjDu8m8/G5Co5zBMy8b\nY7qNMYuttVUtij1f/FkEAL+69Xx8+FvSFyJTocTZihyuo4jC3uPn20w2QIstp5yhZp/ZJhpOr0v3\nRkyDsrQi/l+JLSTDoei8XqrbMEX/6gsX4IJ7fynXyewUcSNUemZ+RCrYDu33q9MWh6VybVOblDxs\nWyHNWsud0jqylJHfoPeeq4JGr0bPDCsxaVKexrR5uSZOWblopiELEhtWzg83zGyZo2uaWH916/lu\nI7x1z9/O0pTzC713XzXXS5gRjW6GuszLF973P5M33XUlVt8mxbw9MZGhdkDEkaPIT66tBERAlKWS\nOyQOIhqfoTEsGio0XybKEO3N7K0jQ19GLCZoWHbqWQfuugw9X/yZXKfxlYok/S5qpq57kOsDhyRx\nGQBGB6RkUXFIqt95YnDV+xyZ75RKvHu/GW4y26iYeNeYl99NaGgzWGufB/DiVGb2A5jMslLMczR8\nZrDW3pF0bIZYISLuDseslhNIeY/6+7VCp/2IxARy1AjU0zJIfHDbHxIHLDJytI6Mx84RA603w/cE\n1k7zVUiWVCrye0R5aSsUtS+nMdLVDgDy7RIO0d4tWkd5SCT16KBUyYtG/CLoIagFUuGgm0HhkEqk\nUzkSraFC7LWSYQMP0XQ9k/X7OHsnZk9rYEtOdU3XK9ETMF5l2bjExq+Y0cnz9tJ0mUz1+yNWM1h9\nIZFYKlNP7Zx0zst1NPtz56TIaqVJREu+Wa53FURkjI9KI9RaUM6gcNDNoHBIRUxEWWKRXoW2puq0\n5zfwWX4mZOysCEsOehQ8DYK1Fyqlw2pDjbI63mdab4a1kSyLGaa5opyIAHZ3NE2Im6cyIoVQASA7\nLmy/QjdFzWL2znWLBtLdQ5pWDShnUDjoZlA4pJM3wRpBhmlmX+xeJkNM5FdPK7NBKltdI8gE6EpU\nXQR4YaAsGlCdnhxHU1dXLGKfWEPiIaRBVMgNXyZ3ds5/aksrdQNsJc0iJyInS3OPT6g2oagTuhkU\nDroZFA7pNEans0GW4xHYEOeFjpFjK275o/NHJcuqojw3R3ELea74WuKzCJ0faIx3NojCRbozoRgI\nXqtn5aTYCxrFdJH+N8dzohrmmn3VMMfHpmaxQPIP2tksax8blv4dtaCcQeGgm0HhkFJKfiVAM3vl\nCGViqUcV1KYwNo5k5lchFs4qWuSx8+p0FIixiDu/QnW+vbiMTOhdSYzl5F3bSE1sIwdUPOQulyGR\nSmp4sSwR5kcGpEHrREkboyvqhG4GhUM6jqqoOu0HAvDJm+IU4vuVT/4cD8FixnM20Qh2gHlrCmSi\nZ2ZuezS5Du5RwSydwuly8k7NZClsbhJNoSkvY1qbZO7ORd3efONj4sQqkoOuVJa4keIEJSVlkv2Z\nlTMoHHQzKBzSCXujPVfmKT0HFie4sJiIHdu9YzyHunkWLEIS0UDPybIYqjriaLDoImdTC2kKnS2i\nKeTpYfmsaANtJBpyEDZfGOz3pmPnXYlWNjouxrpKKeCIq4FEm8EYsxHATwDca6190BizBvOg4qmi\nPswoJowxHQC+DeAXdHleVDxV1IcknGEcwOUAbqdrF6COJqeVHCWH5OX0HHkxDCQm6N6jOVz16OOs\nH6JMY2aOlPafzkajqkMAAJUKG6cEna3iU+ggraGdRUabvOtoQXIls0WKO6CkoLFRv9JBiQxpxYh8\nPRRdHWVDGk4YSTrelgCUjDF8uaOeiqdP33IuNvRMZmH3fe2jiRa20PDynWfO9RJmxGwcIGeseHr+\nt58DAPR97VIs/2dpf/z2OYPseI8zeAfLmVYXezq7I9n0EQ90Is6QJS7T2SL5DtOc4Q93bsLpX98h\nYwKcoZkOkHmKZhoeSsYZxikozO93KeN3feMyhNDoZijU0+SUcwg5jZ7zHf1YMP7l4yyOQ9FCooHI\nUBibZ7yq7lKu1NiVXYtFO1jUIXRHXsTE0g6pqrK6Z4Wjl3TJH7o0IZunMFJwdP+QiAz+4wPAyLD4\nHTItlIdJv3OOI8GP+g2ro1E7w7yoeKqoD0nbH/8bgHUAisaYawB8EsCj2uR0YSHJAfJFTGoPcXwk\n6SQVimiueFE+BNIMMiHDUuwzSxmfEQZc5l54Ep+2eR1yvSlDoqDdr0d1wirxF7Q2kfGsLA/rWCRn\ngI4uYecT9Oa5dnlOSyvVfioNOLK57DPwIs0xQVFduXaZI0tjKgn7hKs5WuGgm0HhkI4LO6D2haKF\nQgaho54bVTf8+HezaKhe+7FCz2mjQNJli4T9H9clmgEAdOTFoFQpyrMmSuJTGCxO50guQYGuH+qT\n8lcjI6IZsNjj/NRs0U8kyrZQgDFFTa1YuczRXR0iMoYGNCBWUSd0Mygc5qpHFYCwOKglJpL0x+By\nvF4+Ju19DoZqbxet4XQjxqEVHcKOK2W/gszEuKTJ9x8SeqJMFsExYdW9h8SgNDgo46My5XJQoGuU\nEbGSB+eRAHkOtCXr4sSoaCDZLjFA9Szj4NowlDMoHHQzKBxSERMhP0AISVslBZ/l+Zq4/K/s/fa8\n0EsXCRtd0iS+guZxEQ0jseopK5a3O/rEHjEW7ekTtt87LBpHK6XBRYsoIolSCctUL5Pd0U1Zv8BX\nlt6vMCRRUP0HRh1dHJP6kOvXzFjjffK5iUYp3hXQzaBwmFNt4p1CFHBnt1M288puEQcrlgobPnmV\n0Eua5ec5POBnQrd3yf9RZ5eMI1cBxndJWGh7Rlh4S6esb4zcBuMT8qGVjFqZsm90Gh2WZzVBXN3F\nUbk+WpQ4idJSXxMKQTmDwkE3g8JBN4PC4Rg9M3j1T+q+hyOc29rEurhyyXGOXrVYZPL73iudWt67\nhhxQEyLzu7plDACMl0VWj46KtXDlcXIWQUUsgiuWiNzvH5HxXL0u3yrqalQUNTOXjaXkU4JNeVyc\nXrkKnR+G5P5X/8gpLecjBOUMCgfdDAqHdCyQgZx8L9GDx1cCoXEAQM4cr/oKBQMsahH9zqyVji4t\nFFbeTGa8iTFhqS/+UVh7mcLZSBOdXFdRWC8XRmluEladoVC+zg6Z+yA1GWOJ2EwtApAVi+XoiKxp\n6sGyDvo9xsdFteR6aUMJEx+VMygcdDMoHNIRE6FspwBy4A4uvqAgCYIcpaZ3t4kWYFaK1rDuODmh\nj44Lv5woUd/IMXH2tCyWKOh2Ch0bHfUdVWPkuCpRtk2FOuqUKMVpYETmyzbLWvOcFZblYmQyvjTu\nd4kc7BcnFK+jQhpIS7PItXxnF5IgaUr+PQDOmxr/DQAvQFPyFxySpOR/GMBGa+05AC4FcB80JX9B\nIglneBrAb6fofgAdqDMl349nkOuhiOYshXVVMvH9ypVRhA1vWCPJKGe8R0LXOkmz2HeAElg7ZPYV\nqylBJscxDBK5XMz6iShRq7D6kYKMK1BzMK9lAGkmzRkRXSUSP6MFEVfDR6Tv/FD/YW/usYK8R5Y0\nlmbq8sPtFErjyZh2JmkgCQAYYz6DSXFxibV2xdS1kwD8wFr7odB9rxwYjjas6Ah9rUgXwUNb4gOk\nMeYqADcB+CiAPyV5+DTO/4+XAAB9Xz4XS//laXe9EriziXZ7nDOUabr2rByYPvBeieYJcwY5eKGJ\nOQOZmj3OIOsolnw38nhJ/vOOeJxBTMXTnOGJjxtc/aT8ZHx4HSHOMDYs//GNcIY8220oOqrUIvkU\ne+7+FEJIeoC8BMCXAFxqrR0wxtSVkp8EzJ9KOS4X7NdiZAPW+rXykhvX99A9Eok8TOzy+BMkPG39\nibIBmmlT7jsohpu+nMxVzPuhZyMFGTfO1eppWIbyPMs52QBjo6IdHD4irYkHDosxaoJqMpSLfnQ0\n14PIUYkDFsFjEzR3dpZS8o0xXQC+CeAKa+30FtWU/AWIJJzhOgDLADxOpXxuBPCIpuQvLCRJyX8Y\nwMNVvkqcku8jlGApZJFEQ1OsYdkpPXLyf/8aMaaMHpSu8P30Vk2dYu9f3CWH2BEyAkVl6jNZJJ/F\nhIw5RGcBABgYp3K8xF8j6no/Ni5nicOHRRwcOihngP7D4ncojov8z2VFpGVbfDafqcjcJaokH5Wq\nu8YzGU2iUdQJ3QwKh9QjnTwvRbAer7DLk1a08Rf42Gnikn7leakc9/L/STW1sy6/1tFr1q2nOYSF\n9w2KcWiIWPUESaVR6is1Efn/NyVKhR+dEM2iMCTPGhoUraZ3j4iGQoESZ8oiurgVcjnL1e98g1cm\nK2uPKOoaFAHVTHUkuQ5nLShnUDjoZlA4pCImsmQoYve0Z1yiKKSedjk9X7vpBO9ZF58k2sQbz4lh\npu+QsOGhArnAi9QGuCBs+/VXX3F0YURkw3s2/JWsm1sLj/j2/UF6Vm+fWAsLQ2JRHBmWdQySFzqK\nRDRkqM1jhavvR+zGj4kJbu9Mv2GW/CdRhcoPaPMRRb3QzaBwSEVMTBArm8gT6yWDSc9iOT1f9H4R\nDRduEO0BANZ2yLiP3/BJRy//4EXy3CbxOxw+sNfRO599ytGFQTn1f3DzpY5uolqKuwdEFOzZ+5a3\njr1vkWggEVIskdu6Qi5lCnCN6DpbrLgQWqZWvkgUul/uKWXD0WIhKGdQOOhmUDikIiZGWkRMjFM0\nzqZFshc3f0BiENauE1bdF4vSOVQQ0bKHDETZTjmh9/fud/ReK1pDNCLGmnP++jxHZ5aIK/ylP+1x\n9K5e8iH0+0GpnD5fjijlnX0CqM7OQyWMPbtbFLju3+JXyufnctBSvD9CAMoZFA66GRQOuhkUDunU\njq6IVe7kxUJ/9m82Orpnrfjv91LBzZ0H/J6OBwfEydNL/vsjhyRkrG+vnBkyYyJxN556tqMHIrFk\nvvSH3Y5+s5+6y49yLIVfCiei+DbuqMOV2PyOOPx/V65KR6F48VjQciYKtFAIdfCp1XmNoJxB4aCb\nQeGQiphYSmFbV26SkPb3nSiiYWdBWPLrh0UF3Nfrq3QHBoWt9h4WRxWHk4+NyHxdLWKN/P0huX6w\n0Ovo/RT2ViKnThOF3x2lnXnqXeALT05UH+E/mNTEqDoN+N3oMgEx4V9XMaGoE7oZFA5Jute1A3gU\nQA+AVgBfBfAy6sjCPqFbLHyHR2T/fecX/+voQ0U5re+h4lQHR/wEkmGKPYhoxgwkfxEVocco82k/\nOZQqXt1pavpF3JU71GSPEhP8XfXemb6pMGAF9LQMFg0sCmL3ZkLipLplM2kCZRLOcCWAHdbazQA+\nAeBb0CzsBYkkeRM/pI9rAOxBnVnYivmBehJvnwdwAoArADxVT2P0/QckLuDJ34ojaIIMLnkyjBQr\n1M0lG8+15NR2TkFnBxGzSxErpRwZeyg5J+/lMspzSl5Lm5jhJ9A7M0JAZNC7hgqehbWBcAtoJGja\nVjM2gsfVmZK/CcBjAFZZa5dPXVsP4LFaKfm2byQy1J9BMadoPCV/qv3xAWvtbmvtS8aYPICherKw\nL/7P3wMAdt9+Fk742i/d9cY4g9DN5QBnoAZUmUScgc3D1TlDtoZJ2DcPc/P1SfrA1z+GFXf+jIbM\nzBmyQZNzbI5K7bn9q8Bb91yHEJKIifMBrAXwBWNMD4BOTGZdXw3gv5AgC3toVH7sQols/JQ0Ugz8\nQJlYh3jPws8RxN5vElUdny0F/P18q/dDBwxIgNeumSePAn/EqCyiyBcTAa0hFOdw1Hr5nej2SnKO\nP40km+EhAN8zxjwDoA3AzQB2AHhMs7AXFpJoE6MArq/yVYNZ2IpjFXUdIBULG2qOVjjoZlA46GZQ\nOOhmUDjoZlA46GZQOKRWxscYcy+AszFpJ7vVWvtCWnOnjflahT8VzmCM2Qzg5KnK9DcBeCCNeecC\n87kKf1pi4iIATwCAtfYVAN3GmMW1b5m3eBrAdIUxrsL/5NS1nwK4OP1lzYy0xMRKAC/S576pa4PV\nh89fWGvLAKazgG4CsA2TVfgTx3/MFeaqyWmy2O15jLdThX+ukJaY2IdJTjCN1Zg8SC1IUBX+y6y1\nAwAKxpjpkjWzUoX/nUBam2E7gGsAwBhzBoB91tqh2rfMT8znKvypeS2NMXdhMlCmAuBma+3LqUyc\nMqa69XwZwKt0+UYAj2Ay1WAXgE9Za4tH3z23UBe2wkEtkAoH3QwKB90MCgfdDAoH3QwKB90MCgfd\nDAoH3QwKh/8Hfu76AKgVvdEAAAAASUVORK5CYII=\n","text/plain":["<Figure size 432x288 with 2 Axes>"]},"metadata":{"tags":[]}}]},{"metadata":{"id":"59mPqKwMdT0V","colab_type":"code","outputId":"ac83ee0a-b91c-46f8-a732-be7b65652e9f","colab":{"base_uri":"https://localhost:8080/","height":193}},"cell_type":"code","source":["t_imgg = t_imgg.reshape(1,32,32,1)\n","result = autoencoder.predict(t_imgg)\n","result = result[0]\n","# result\n","plt.figure(figsize=(2,2))\n","plt.imshow(result)"],"execution_count":0,"outputs":[{"output_type":"stream","text":["Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).\n"],"name":"stderr"},{"output_type":"execute_result","data":{"text/plain":["<matplotlib.image.AxesImage at 0x7f77987bc0b8>"]},"metadata":{"tags":[]},"execution_count":55},{"output_type":"display_data","data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAAAI0AAACOCAYAAAAMyosLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAFGZJREFUeJztXWuMZNdR/u6je3oePTM7O7uzzzi2\nSc6fCKLkRx6SMcgJCSgWQjYEYUUBLPOIiWxEECEBv3AEiSG2Ykgix0GxIQpBGAIRCEXJH1uyELYl\nQn5Yl/CQ7fXa3l3PzqN7+nUf/JjZPl/VTM/2He22Z2fq+3Vu1+lzz71dfarqVJ2qoCgKGAxlEL7R\nEzBceTCmMZSGMY2hNIxpDKVhTGMoDWMaQ2nEO/2ic+5BAO8GUAC4I0mSZy7ZrAy7GjtaaZxz1wN4\nS5Ik7wFwK4AvXNJZGXY1drrS3ADgWwCQJMnzzrkDzrnpJElWtur88bsfKADg9z/2y7jn4b8UtFbu\n+TYPIkHrdf3GY0abkN2sIvoV9L0MkpbB0/LAP25eBHKSgZ9HEUgaX3I7RCb6hUSLw1TQoqAgWg8A\n8NDHP4w7H/4mQqKNRf57UdYTY8SBpzXOvSpoi6+86C/SZr85OSXf6YGZA/32kUOHBK02Od1v3/PJ\ne9UL8tipTnMEwFm6Prvx2bY4tnDoYl32Fd60MPdGT2FH2LFOozCQK4H1FeYCwzxy/+9dolvuDfz9\n/b/5Rk+hNHbKNKchV5ZjAF4Z1Pm+Lz4GAPjyvZ/ArXc9IGjtHokntfB1e3m/XUR+me3mVXmDmK4D\n9UihF1dSPMlugbi3/g/4eYSgLxZSPPG3oqAraCwkQqyLnb+7/zbc/AdfQRyyePLtIO+IMaYnx/rt\naiZpr7/2v/324pmX/cx7DdGvNu7fx/zcvBx/Zqbf/uy9D2IQdiqevgPgZgBwzr0DwOkkSVZ3OJbh\nCsOOmCZJkqcBPOecexrrltPtl3RWhl2NHes0SZJ88lJOxHDl4FIpwtuiV3idQOstm3QQQhGSGVyQ\n6azMauR+jCAaF6Qw8H0j0m/0EhuG/ImkBmRas95S5NIkFt8p9HPS9kHmR8lQRZ7T+IUfU4c61TL/\nHuv1uqBdPXFtv32gPtlvt5rnRb92p+XbqdS7sLKsH2NLmBvBUBrGNIbSGIl4Egan2vXl9b5Qu7QB\nb7GSGAsKOUYmxoei+TW+INMZ2uQmGzwIckHjnd9AzFfu+sqNZLUjTLKmyD0ty1OEdL+UxozVPNKu\nF129rqRN1Pz//8Ch2X57ekb+xK01b+Qun18UtG5rDcPAVhpDaRjTGErDmMZQGiPRadh0zFKpTOQ0\nhULrO+Q6YJM7iMZkP/KUs9tgfUyiBXwvOYTQVQL5X2Kvd0DKUACpV8g5yWdhfaoIoy3b62N6xJGm\neWq3I10Yq6l3K4R5u9+uhFr38e8unJ0VtGJm8BYCw1YaQ2kY0xhKYzTiiW+jdoAD4f9V4qkYIFoU\nr/O13kXla2FyK9u8CIUtrcan3dyAvdDyXjzkJtoAFIAIAEPkPfZhKOdRqfp+YSxN+oI97pEX0dWq\nFNcknTA7OyNo6u0PhK00htIwpjGUxkjEU1r426Tqlmngl+NMmTQZB01xG9J6ykguBKEM0BKiTDhA\ntQgKiKafgEWSFwMc2wuoQCu11vNT8z+1FgMxjR9Hfh6VihwkrvrrakW+xyqJ17HYv59apOZIwWHa\nssrS4WSqrTSG0jCmMZSGMY2hNEai02RkOuebPNQUkKRoHLBVkMawyeQuxHaupAldhfvpWVI/7Son\nkzhgPUYFWgW0c6x3cys0Bn+rUqkgInM5Ij0jjOT4EY0ZVSStVvU/ZSWk4KqsLfp1uv5evUIGYaUd\n2xE2XCYY0xhKYyTiSZjLgV7SBxmjAAaJJO3YFMFaOjaX+/p+ebGNeal3lbeTaqKjp0bqaG9Mc4zJ\nHq/GESK6QUjHeauxMqsrAbXlc8YhbQXQJPNMBXL1fL8ileKo2zXxZLhMMKYxlIYxjaE0Rq7TFMrL\nnW9nSguTezB/B9tcSSWkGEQQ5niwKep86wsdQCVzjcjnZE95EdDZpqCCjFKIhOSJz5U/I89YWZG3\nzslsz0hXSbsd3ZEu1PaEPuA+AEMxjXPubQD+EcCDSZL8uXPuJIC/wrqm+gqAjyRJ0tluDMPewUXF\nk3NuEsDDAL5HH98H4C+SJLkOwH8D+NXLMz3DbsQwK00HwM8A4MQyPwHgNzba3wbwCQBfGjRAHpKX\nO5BBQXlRpX6Dd3rljvDgs1PK0hU0NkUj1S8X6UQkKpGnRWSq66ClmG42ppb+Skzea6LVoipieu4q\ntyMpgzhLVqhSjfRo57fb8ulF9NFh4ZlX0igbMnDsokyTJEkKIHXO8ceTJI7OADg63O0MewGXQhHe\nNgsWAHz+YzfiTQvrke//cN8tl+CWeweP/M6Nb/QUSmOnTNNwzo0nSdICcBzrmbEG4re/+M8AgCfu\nvQU/d9c3BC0rOFOVXvBpB5cTLirBwEZFEGnRRc7GbY6fZGCxI9ftsTESO9HWbUDu4NZrch61mn/O\niY1Y37t+8b2472+exsS4/16NYn+DXDoUg54/NtteXRK0pdd94sbumhdPuXqWauzfR5qpOGM6LvzZ\nP/wMBmGn+zTfBXDTRvsmAP+6w3EMVyAuutI4594J4M8AvBlAzzl3M4BbAHzNOffrAF4A8NjlnKRh\nd2EYRfg5rFtLGu+/5LMxXBEYyY5wII7G6v1bf609w0IaC5razeU0Idp7zR7kgFKGbNr9JJ0ml/Oo\nxV4/mYi9bjKlzxSRbjJVk7RJysw5Rf0OH5jEBOk/FZpj2pFzTOlZMhXUzl70jOYbqF3len3K0/T7\n3s7zTzDfk6E0jGkMpTGaTFjbiKftIGJ1CzaX1fC0rG4anpdn2hKOVa7HmHatxyL5Wg7U/a717GSt\n3+bsUwDAx5TiQu3EknnbW6U43dVFrKySAzP1iRQ7TVlqIu34mgdpT+4Ih/QOJmp+jnoLYoYyRUzW\npwUt1A7YAbCVxlAaxjSG0jCmMZTGiFKNMAYHSRWB7kmeZ07xoYaohIPdA2yOR9SvEspHDyhoe2JM\n/pfmZ7y5PFf37TGlF4mz0SpoO+BMoJS1qha1sbbskz53uz77pg6gynp+zE3xX+TCCLf5VTs05rTS\n3SYn6rr7lrCVxlAaxjSG0hiNeMopSaHaiWVzOQyV3BGl/0gEqfQZoPG1V5eXcU7PUVWmKIf0zkxI\nuXNo2oukOtH4rBEAVGj+eSpTnnDCbC6zWK1W0aYArZjqPsSxfB9pl4726igy2i1OM+8d76iE0isk\nClM5fZw8qeTtANhKYygNYxpDaYzIYckiQ1WYZUehihHmRIVCrGlnI13nas2N+Ahshcr+qUyKk+Q0\nPDo3KWgnFnyFWRZPOpMUP4uum8CWz9KS7zc1UUWLKuaILBfKTOQd21DHU/P3SFx3M/muVtd8LHHz\n5ZcFLdDb5ANgK42hNIxpDKVhTGMojdF4uVms5mrHlr3X+WCTm4OJdKYqLhcYKTM4JPOcg59m6xOi\n38GDXo85efSgoB057HUa3gUOc1VimfSYbJNOQ+lWMq/fTNen0F7z3uZGwz9brycDywvKvBWpzJ98\nhLfX8nrL2prKhEXZrjKVCevMa69hGNhKYygNYxpDaYxEPFVIZFQjJT7orA23ASDP+agsJSlUjjbe\n9Y3H5LJdn/RiaOGgFwMzdRXfS+Z4NW0IWtrkjA/+86CQz8JiJ1NnikQ/cmbmaQ/Vqt89jmJf7beb\nqRhe2rbO1TtodbyoObvsnZJLK9Jxmvc4zliuGdliC8PAVhpDaRjTGErDmMZQGiPRaUIyPyNVejig\na1XeCCFnpyIPclXNenzK6wEL8zKQaHrK6zT1Cf/FSJ2T7lF6jsaSlO0F6Thczk+HYXc73rxNU/mc\nMekjnHC71+2KkQKKoNIpVcKYr6W+s9rw3uxmy88/VQmyOe1LFMvxK2M1DINhM2F9DsB1G/3/GMAz\nsExY+xbDZML6SQBvS5LkPQA+COAhWCasfY1hVponAfz7RnsJwCRKZsKqUCLCWHm5I7rWnluxQ0zm\neFXthh6Y8iJjfmZK0CbHKbOUKCUoTdFJOts0U5djzEx7U52PsnbWpBjLKfgpzeWz9CjNVI9onV6B\nVo92c3P/k3RS+Zwtiu9dWWkK2tnFRd+v6efRS1UNLYoIqCkvehYM5+UeJgFABuDCDG8F8C8APmCZ\nsPYvAl1hbRCccz8L4FMAfgrAD5MkObzx+Y8AeDxJkvcO+u6pM4vFicNzl2C6hhFi4FHYYRXhDwD4\nNIAPJkmy7JwrlQnr0196AgDw2N234SN3PyJoEe8IbxJPdE28XZ2W5QjnD3oH47EFyZwDxVNPxs5G\nFI+7U/HUanmR0e7qara+fUE83XTDdXjie0+h2fF911q+vdqUc9xePJ31/Zre2uulclHI6H3XVNaL\n6WlveT567+9iEIZJajQD4AEA70uS5ILgvJAJ668xRCasoKDq9Jk0dWNK56XyNSMjs7Xb9ebsUeWh\nPkIe6sMHZNTdFJ23TlM/RlDIfvNznvFmFdNk5M5o0g+i/4usL3Q7kmlSGqNH7oFWq4MWeZ5bHa/j\nLTckY5xb8me7V1clw7apGAa/YsW7qpCIJI6nw0mdYVaaDwOYB/C3lOHzowAetUxY+xPDKMKPAHhk\nC5JlwtqnGMmO8Bhld6oE0tSdIPM5DORZoTZtER+c9fL2mhMnRb9xUnGK1qqgjdW8qOF6SbWqFE9z\nlEIkUAHjK0t+zDXKnJmqksTdnr9ud6XsYrO6QR7pc6sdLDe9qFlqkId6ST7LStOLV50JNar454lC\nOjvVk3PMM/+OC7UF3ysssNxwmWBMYyiNkYinOOLdXJXvX+zuStE1ThXvr7rqWL89d1A61p596sl+\n++X/k2d53vWuH+23jx8/3m8HMzILVLPqxUmjKeexct4fTKpUvSzMlIjgI0aZ2m1tkSg7v7Im2ovk\nbGys0ZFaJf44q5U+I1YhL25U+LYWT72M4qnVEeYolurBINhKYygNYxpDaRjTGEpjJDrNdM0HSc2M\nS7kZkrdZZ7GanZrvt69+00K/fezEcdHvB//m9YzmisyIOTHpTXXOZrnWkueB1lpelzj18iuCFsRe\nhzpy3Jv7HXVu/PVFv4P7+rLczV2jHeLzK97EPne+gU7K56UoA6lKNRJF/B9X57zFu/NjZColSYXK\nQeogsnBTQZOtYSuNoTSMaQylMRLxNElOw4mKvGVBwUn16VlBu+qaq/rtq6+9pt8+MS892Te833s0\njp6cF7Rr33ptv807uy+8+JKcBwV89Qq5pB+a92NGNe8sXXpFirGXTvtjrYur6jgsSbJWl8zvRgs5\nnz8iU7qisjFy2hRdxoCPBBeirpUSY+Lclk5qabURDJcJxjSG0jCmMZTGSHSaNnlxcxXQvXDEBz+9\nVVbkxcKCDz0uqEDFqbNnRL8s9+MfnpP6TmvF6zHPP//DfvuF09LdcPz4m/vt+cMLgtajlCIvvPSi\nb78odZqlJV9Xsp2p80b0qjkDaY5CKCgB6RWb9BF2HahMqAX9/7lWpz5LxpeRWjJ0bahBsJXGUBrG\nNIbSGE2qESobfOS4PO3y9h/zXuhD84cFrdnzouVVEicNSqAMAO2GD4zqdGUMcjPwHmSOiF1QgVxz\nx/wucyeV5vK5U14kLS/7e62tyXuRAxmx2lrIuVx0SnHRUSSyWLGoylUW04xpmyQJ15nm4XTJwcGZ\nVnMTT4bLBWMaQ2mMRDzVyWF5RFk39XHvUFxZklbR2bO+qn1j1R877ajjGxlZNy1V7qZBAU/tJtEq\nMh72tVP/0283G0rEURYGFjOhqq9QJXMkgw5+4qq9VOMgKGS5Rs6UoXNs05h675Yr3QYiCbbqyIm6\nA/mcmxJlDoCtNIbSMKYxlIYxjaE0RqLTTNGZopXzrwraf/5ghWjynE+763WJmOR0qoKlM8qy2W7r\n+kZ+zCZltiyUBzkMvSmtzxQJPYYzbBaqH02rk8k5pqQvcFbNNN+sn/hJFgMvdbENFFv//7UnO2Z9\nalNJ5eG83MOc5Z4A8DUACwBqAP4IwPdhmbD2LYYRTzcCeDZJkusB/AKAz8MyYe1rDHOW+5t0eRLA\nKZTMhNXt+XjZ11SNoQ5lO0ghTcCpKX+kthjzccBtVYlWZJdQW6XxhB9jikr9pfrMEiWLTjfVPOAr\nWsJzXbuARYYqu0j341oOAToIOFqXRZC2l+nWQai9jdwkh6WqaxVSIvBYeTODQr7XQRhap3HOPQ3g\nBIAPAfiuZcLavxg6ExYAOOfeDuBxAEeTJDm08dlFM2G9vniuODg3P4hs2J3YeSYs59w7AZxJkuSl\nJEn+wzkXA1gtkwnrG098HQDwW7fdgT998HOCNqx4ilk8tbcRT8pqYSditkPxJP9XbPnoJIj+WovJ\njCytbGOMr993J2656yHkQ4onYQhp8UTgHeFQ1W/g0kYVLZ5I7H/1M58aOP4w4unHAVwF4E7n3AKA\nKaxnvho+Exa96Ehls4hSPlssf4Qqfa+g2kdRqnQJYhpdfZkfkeW7DjgK6TrSJ4LIPZBStqhc164i\nRok3nUvy4HvHRSEYVo/JCEhnKpSJHYhgci5EovQzdkWoe1XS4QzgYZjmywC+6px7CsA4gNsBPAvg\nccuEtT8xjPXUAvBLW5AsE9Y+RSlF2GAAzPdk2AGMaQylYUxjKA1jGkNpGNMYSsOYxlAaIwnCAgDn\n3IMA3o31jfI7kiR5ZlT33i3YKxX6RrLSOOeuB/CWjep0twL4wijuu5uwlyr0jUo83QDgWwCQJMnz\nAA4456a3/8qew5MAfn6jzRX6/mnjs28DeN/op1UeoxJPRwA8R9dnNz5b2br73sNeqtA3Mp1GYbhT\nWXsQGxX6bsVGhT4iXTHvZFTi6TTWV5YLOIZ1xW9fgSr0/XSSJMsAGs65C8dPLxqXtFswKqb5DoCb\nAcA59w4Ap5MkWd3+K3sLVKHvQ1tU6AOGiEvaLRiZl9s59ydYD+jKAdyeJMn3R3LjXQLn3K8BuAfA\nf9HHHwXwKNaPBr0A4FeSJBkuuvsNhIVGGErDdoQNpWFMYygNYxpDaRjTGErDmMZQGsY0htIwpjGU\nhjGNoTT+H8g9J60tih1lAAAAAElFTkSuQmCC\n","text/plain":["<Figure size 144x144 with 1 Axes>"]},"metadata":{"tags":[]}}]},{"metadata":{"id":"8ZkvtLAqdU8F","colab_type":"code","colab":{}},"cell_type":"code","source":[""],"execution_count":0,"outputs":[]}]}
\ No newline at end of file
%% Cell type:code id: tags:
```
from keras.datasets import cifar100
(x_train,_), (x_test,_) = cifar100.load_data()
```
%% Output
Using TensorFlow backend.
%% Cell type:code id: tags:
```
import cv2
import numpy as np
```
%% Cell type:code id: tags:
```
x_traing=[]
x_testg=[]
for i in range(50000):
x_traing.append(cv2.cvtColor(x_train[i], cv2.COLOR_BGR2GRAY))
for i in range(10000):
x_testg.append(cv2.cvtColor(x_test[i], cv2.COLOR_BGR2GRAY))
```
%% Cell type:code id: tags:
```
x_traing=np.array(x_traing)
x_testg=np.array(x_testg)
x_traing=x_traing.reshape(50000,32,32,1)
x_testg=x_testg.reshape(10000,32,32,1)
```
%% Cell type:code id: tags:
```
x_traing = x_traing/255.0
x_testg = x_testg/255.0
x_train = x_train/255.0
x_test = x_test/255.0
x_testg.shape
```
%% Output
(10000, 32, 32, 1)
%% Cell type:code id: tags:
```
from keras.layers import Input, Dense, Conv2D, MaxPooling2D, UpSampling2D
from keras.models import Model
from keras import backend as K
input_img = Input(shape=(32,32,1))
x = Conv2D(32, (3, 3), activation='relu', padding='same')(input_img)
x = MaxPooling2D((2, 2), padding='same')(x)
x= Conv2D(64, (3, 3), activation='relu', padding='same')(x)
x= Conv2D(64, (3, 3), activation='relu', padding='same')(x)
x= MaxPooling2D((2, 2), padding='same')(x) # 8x8x128
encoded = Conv2D(128, (3, 3), activation='relu', padding='same')(x)
x = UpSampling2D((2, 2))(encoded)
x = Conv2D(128, (3, 3), activation='relu', padding='same')(x)
x = Conv2D(128, (3, 3), activation='relu', padding='same')(x)
x = UpSampling2D((2, 2))(x)
x= Conv2D(64, (3, 3), activation='relu', padding='same')(x)
decoded = Conv2D(3, (3, 3), activation='linear', padding='same')(x)
autoencoder = Model(input_img, decoded)
autoencoder.compile(optimizer='adam', loss='mean_squared_error',metrics=['accuracy'])
```
%% Cell type:code id: tags:
```
autoencoder.summary()
```
%% Output
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
input_6 (InputLayer) (None, 32, 32, 1) 0
_________________________________________________________________
conv2d_35 (Conv2D) (None, 32, 32, 32) 320
_________________________________________________________________
max_pooling2d_11 (MaxPooling (None, 16, 16, 32) 0
_________________________________________________________________
conv2d_36 (Conv2D) (None, 16, 16, 64) 18496
_________________________________________________________________
conv2d_37 (Conv2D) (None, 16, 16, 64) 36928
_________________________________________________________________
max_pooling2d_12 (MaxPooling (None, 8, 8, 64) 0
_________________________________________________________________
conv2d_38 (Conv2D) (None, 8, 8, 128) 73856
_________________________________________________________________
up_sampling2d_11 (UpSampling (None, 16, 16, 128) 0
_________________________________________________________________
conv2d_39 (Conv2D) (None, 16, 16, 128) 147584
_________________________________________________________________
conv2d_40 (Conv2D) (None, 16, 16, 128) 147584
_________________________________________________________________
up_sampling2d_12 (UpSampling (None, 32, 32, 128) 0
_________________________________________________________________
conv2d_41 (Conv2D) (None, 32, 32, 64) 73792
_________________________________________________________________
conv2d_42 (Conv2D) (None, 32, 32, 3) 1731
=================================================================
Total params: 500,291
Trainable params: 500,291
Non-trainable params: 0
_________________________________________________________________
%% Cell type:code id: tags:
```
autoencoder.fit(x_traing,x_train,epochs=5,batch_size=256)
```
%% Output
Epoch 1/5
50000/50000 [==============================] - 27s 549us/step - loss: 0.0095 - acc: 0.5086
Epoch 2/5
50000/50000 [==============================] - 27s 548us/step - loss: 0.0094 - acc: 0.5101
Epoch 3/5
50000/50000 [==============================] - 27s 549us/step - loss: 0.0094 - acc: 0.5113
Epoch 4/5
50000/50000 [==============================] - 27s 549us/step - loss: 0.0093 - acc: 0.5142
Epoch 5/5
50000/50000 [==============================] - 27s 548us/step - loss: 0.0093 - acc: 0.5141
<keras.callbacks.History at 0x7f7798d939e8>
%% Cell type:code id: tags:
```
import matplotlib.pyplot as plt #test image in black and white
%matplotlib inline
t_imgg=x_traing[50]
t_imgg = t_imgg.reshape(32,32)
plt.subplot(2,1,1)
plt.imshow(t_imgg,cmap='gray')
t_colorimg = x_train[50]
t_colorimg = t_colorimg.reshape(32,32,3)
plt.subplot(2,1,2)
plt.imshow(t_colorimg)
```
%% Output
<matplotlib.image.AxesImage at 0x7f77988ab358>
%% Cell type:code id: tags:
```
t_imgg = t_imgg.reshape(1,32,32,1)
result = autoencoder.predict(t_imgg)
result = result[0]
# result
plt.figure(figsize=(2,2))
plt.imshow(result)
```
%% Output
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
<matplotlib.image.AxesImage at 0x7f77987bc0b8>
%% Cell type:code id: tags:
```
```
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment